The dissipation and persistence of two cereals herbicides, chlorotoluron and flufenacet, were studied in a field experiment including three replicated plots of unamended soil (S), soil amended with spent mushroom substrate (S + SMS), and soil amended with green compost (S + GC), during the winter wheat cultivation campaign. The SMS and GC organic residues were applied to the soil at rates of 140 or 85 t residue ha, and herbicides were sprayed as Erturon® and Herold® formulations for chlorotoluron and flufenacet, respectively. Concentrations of both herbicides and of their metabolites were regularly measured in the three soil treatments (0-10 cm) from 0 to 339 days. The dissipation kinetics fitted well the single first order (SFO) model, except that of chlorotoluron that fitted the first order multi-compartment (FOMC) model better in the unamended soil. The dissipation rates of herbicides were lower in amended than in unamended soils. The results also showed that the DT of chlorotoluron (66.2-88.0 days) and flufenacet (117-145 days) under field conditions were higher than those previously obtained at laboratory scale highlighting the importance of the changing environmental conditions on the dissipation process. Similarly, the formation of chlorotoluron and flufenacet metabolites under field conditions was different from that previously observed in the laboratory. The performance of the MACRO pesticide fate model, parameterized with laboratory data, was then tested against field data. There was a very good agreement between measured and simulated chlorotoluron residue levels in the three soil treatments, while the ability of the model to reproduce the dissipation of flufenacet was good in the unamended soil and very good in S + SMS and S + GC soils. MACRO might be used to estimate the remaining amounts of herbicides in amended soils from degradation data previously obtained at laboratory scale. This would help to manage herbicide doses in different environmental conditions to preserve the sustainability of agricultural systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.138374 | DOI Listing |
Environ Pollut
March 2023
University of Paris-Saclay, INRAE, UR HYCAR - Artemhys, 92761 Antony, France.
Herbicides are widely used to control weeds and maximize crop growth. Because of agricultural runoff, these chemicals are potentially hazardous to aquatic wildlife. However, their ecotoxicity and resulting disturbance in individual performance remain scarcely documented in freshwater crustaceans.
View Article and Find Full Text PDFSci Total Environ
July 2020
Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain. Electronic address:
The dissipation and persistence of two cereals herbicides, chlorotoluron and flufenacet, were studied in a field experiment including three replicated plots of unamended soil (S), soil amended with spent mushroom substrate (S + SMS), and soil amended with green compost (S + GC), during the winter wheat cultivation campaign. The SMS and GC organic residues were applied to the soil at rates of 140 or 85 t residue ha, and herbicides were sprayed as Erturon® and Herold® formulations for chlorotoluron and flufenacet, respectively. Concentrations of both herbicides and of their metabolites were regularly measured in the three soil treatments (0-10 cm) from 0 to 339 days.
View Article and Find Full Text PDFJ Environ Manage
April 2020
Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain. Electronic address:
This paper reports the mobility and total balance of chlorotoluron (CTL), flufenacet (FNC) and bromide ion (Br) throughout a sandy soil profile after the application of spent mushroom substrate (SMS) and green compost (GC). Obtaining mobility dataset is crucial to simulate the herbicides' fate under amended soil scenarios by application pesticide leaching models with regulatory application (FOCUS models). The application of organic residues is nowadays increased to improve the crop yields and there is a gap in the simulations of this kind of amended scenarios.
View Article and Find Full Text PDFSci Total Environ
May 2020
Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain.
Addition of organic residues to soil is a current farming practice but it is not considered in the modelling studies for pesticide risk assessment at regulatory level despite its potential impact on the pesticide dynamics in soil. Thus, the objective of this work was to examine and to compare the ability of PRZM and MACRO pesticide fate models to simulate soil water content, and bromide (Br, tracer), chlorotoluron and flufenacet concentrations in the soil profiles (0-100 cm) of one agricultural soil, unamended (control soil, S), amended with spent mushroom substrate (S + SMS) or amended with green compost (S + GC). Based on a two-year field-scale dataset, the models were first calibrated against measurements of water and solutes contents in the soil profiles (first year) and then tested without any further model calibration by comparison with the field observations of the second year.
View Article and Find Full Text PDFSci Total Environ
February 2019
Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain.
A laboratory study was designed to assess the following: i) the degradation kinetics of chlorotoluron and flufenacet at two different temperatures, 6 °C and 16 °C, in an unamended agricultural soil and one amended with spent mushroom substrate (SMS) and green compost (GC), and ii) the formation of the main metabolites of both herbicides with potential risk for water pollution over degradation time. The aim was to determine the dependence of these herbicide degradations on temperature (Q factor) using kinetic parameters, which is essential information for the later simulation of herbicide environmental fate with FOCUS models. SMS and GC were applied in situ to the natural soil as organic amendments at rates of 140 or 85 t residue ha, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!