The mammalian target of rapamycin (mTOR) is a protein kinase that has been considered as a key regulator of a large number of cellular processes, including cell growth, proliferation, differentiation, survival, and motility. Overactivation of mTOR (especially mTORC1) signaling is related to oncogenic cellular processes. Therefore targeting mTORC1 signaling is a new promising strategy in cancer therapy. In this regard, various studies have shown that curcumin, a polyphenol produced from the turmeric rhizome, has anti-inflammatory, antioxidant and anticancer properties. Curcumin may exert its anticancer function, at least in part, by suppressing mTOR-mediated signaling pathway in tumor cells. However, the exact underlying mechanisms by which curcumin blocks the mTORC1 signaling remain unclear. According to literature, curcumin inhibits insulin-like growth factor 1 (IGF-1)/phosphoinositide 3-kinase (PI3K)/Akt/mTORC1 pathway which leads to apoptosis and cell cycle arrest via suppression of erythroblastosis virus transcription factor 2 and murine double minute 2 oncoprotein. In addition, activation of unc-51-like kinase 1 by curcumin, as a downstream target of IGF-1/PI3K/Akt/mTORC1 axis, enhances autophagy. Curcumin induces AMP-activated protein kinase, a negative regulator of mTORC1, via inhibition of F0F1-ATPase. Interestingly, curcumin suppresses IκB kinase β, the upstream kinase in mTORC1 pathway. Moreover, evidence revealed that curcumin downregulates the E3-ubiquitin ligases NEDD4, neural precursor cell-expressed developmentally downregulated 4. NEDD4 is frequently overexpressed in a wide range of cancers and degrades the phosphatase and tensin homolog, which is a negative regulator of mTORC1. Finally another suggested mechanism is suppression of MAOA/mTORC1/hypoxia-inducible factor 1α signaling pathway by curcumin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phrs.2020.104798 | DOI Listing |
Mol Biol Cell
January 2025
Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322.
Rare inherited diseases caused by mutations in the copper transporters (CTR1) or induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Ave S, Nashville, Tennessee, 37232, United States of America.
Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. While benign tumors in the heart, lungs, kidney, and brain are all hallmarks of the disease, the most severe symptoms of TSC are often neurological, including seizures, autism, psychiatric disorders, and intellectual disabilities. TSC is caused by loss of function mutations in the TSC1 or TSC2 genes and consequent dysregulation of signaling via mechanistic Target of Rapamycin Complex 1 (mTORC1).
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Background: Neuroblastoma, a prevalent extracranial solid tumor in pediatric patients, demonstrates significant clinical heterogeneity, ranging from spontaneous regression to aggressive metastatic disease. Despite advances in treatment, high-risk neuroblastoma remains associated with poor survival. SLC1A5, a key glutamine transporter, plays a dual role in promoting tumor growth and immune modulation.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
mTOR plays a pivotal role in cancer growth control upon amino acid response. Recently, CDK inhibitor P27KIP1 has been reported as a noncanonical inhibitor of mTOR signaling in MEFs, via unclear mechanisms. Here, we find that P27KIP1 degradation via E3 ligase TRIM21 is inhibited by human micropeptide hSPAR through its C-terminus (hSPAR-C), causing P27KIP1's cytoplasmic accumulation in breast cancer cells.
View Article and Find Full Text PDFJ Am Soc Nephrol
January 2025
Nephrology Division, Department of Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
Background: Peritoneal fibrosis is a serious complication of long-term peritoneal dialysis (PD) and abdominal surgeries, yet effective treatments remain elusive. Given the known roles of mucosal-associated invariant T (MAIT) cells in immune responses and fibrotic diseases, we investigated their involvement in PD-induced peritoneal fibrosis to identify potential therapeutic targets.
Methods: We employed single-cell RNA sequencing (scRNA-seq) and flow cytometry to characterize the activation and function of peritoneal MAIT cells in patients undergoing long-term PD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!