A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MicroRNA-155 inhibits dengue virus replication by inducing heme oxygenase-1-mediated antiviral interferon responses. | LitMetric

MicroRNAs (miRNAs) have been reported to directly alter the virus life cycle and virus-host interactions, and so are considered promising molecules for controlling virus infection. In the present study, we observed that miR-155 time-dependently downregulated upon dengue virus (DENV) infection. In contrast, exogenous overexpression of miR-155 appeared to limit viral replication in vitro, suggesting that the low levels of miR-155 would be beneficial for DENV replication. In vivo, overexpression of miR-155 protected ICR suckling mice from the life-threatening effects of DENV infection and reduced virus propagation. Further investigation revealed that the anti-DENV activity of miR-155 was due to target Bach1, resulting in the induction of the heme oxygenase-1 (HO-1)-mediated inhibition of DENV NS2B/NS3 protease activity, ultimately leading to induction of antiviral interferon responses, including interferon-induced protein kinase R (PKR), 2'-5'-oligoadenylate synthetase 1 (OAS1), OAS2, and OAS3 expression, against DENV replication. Collectively, our results provide a promising new strategy to manage DENV infection by modulation of miR-155 expression.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201902878RDOI Listing

Publication Analysis

Top Keywords

denv infection
12
dengue virus
8
antiviral interferon
8
interferon responses
8
overexpression mir-155
8
denv replication
8
mir-155
6
denv
6
virus
5
microrna-155 inhibits
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!