Purpose: Adriamycin (ADR) is a commonly used anti-cancer drug. ADR has toxic effects on cardiomyocytes and leads to heart failure. However, the underlying mechanism(s) by which ADR causes heart failure is still not clarified exactly. The aim of present study is to investigate whether ADR-induced heart failure is mediated via HMGB1/TLR4 to initiate the apoptosis through MAPK/AMPK pathways.
Methods: H9c2 cell line was used to create four groups as a control, HMGB1 inhibition, ADR, ADR+HMGB1 inhibition. Silencing HMGB1 was performed with specific small interfering RNA. ADR was used at 2 µM concentration for 36 and 48 hours. Protein and genes expressions, apoptosis was measured.
Results: Although ADR decreased AMPK, pAMPK, ERK1/2, pERK1/2, p38, JNK protein expression, ADR+HMGB1 inhibition led to change those protein expressions. The effect of silencing of HMGB1 prevented apoptosis induced by ADR in the cells. HMGB1 caused changes a kind of posttranscriptional modification on the TLR4 receptor. This posttranscriptional modification of TLR4 receptor led to decreased AMPK protein level, but phosphorylated-AMPK. This alternation of AMPK protein caused enhancing of JNK protein, resulting from the decline of p38 and ERK protein levels. Eventually, JNK triggered apoptosis by a caspase-dependent pathway. The number of TUNEL positive and active caspase 8 cells at ADR was high, although HMGB1 silencing could decrease the cell numbers.
Conclusions: Inhibition of HMGB1 might prevent the lose of the cardiac cell by inhibition of apoptotic pathway, therefore HMGB1 plays an essential role as amplifying on ADR toxicity on the heart by TLR4.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!