In this work, lovegrass (Cpa), an abundant grass of the Poaceae family, was employed as feedstock for the production of activated carbon in a conventional furnace using ZnCl as a chemical activator. The prepared material (Cpa-AC) was characterized by pH of the point of zero charges (pH), Boehm's titration method, CHN/O elemental analysis, ATR-FTIR, N adsorption/desorption curves, and SEM. This carbon material was used for adsorption of acetylsalicylic acid (ASA) and sodium diclofenac (DFC). FTIR analysis identified the presence of O-H, N-H, O-C=O), C-O, and aromatic ring bulk and surface of (Cpa-AC) adsorbent. The quantification of the surface functional groups showed the presence of a large amount of acidic functional groups on the surface of the carbon material. The isotherms of adsorption and desorption of N confirm that the Cpa-AC adsorbent is mesopore material with a large surface area of 1040 m g. SEM results showed that the surface of Cpa-AC is rugous. The kinetic study indicates that the system followed the pseudo-second-order model (pH 4.0). The equilibrium time was achieved at 45 (ASA) and 60 min (DCF). The Liu isotherm model best fitted the experimental data. The maxima sorption capacities (Q) for ASA and DFC at 25 °C were 221.7 mg g and 312.4 mg g, respectively. The primary mechanism of ASA and DFC adsorption was justified considering electrostatic interactions and π-π interactions between the Cpa-AC and the adsorbate from the solution.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-08617-3DOI Listing

Publication Analysis

Top Keywords

activated carbon
8
carbon material
8
surface cpa-ac
8
cpa-ac adsorbent
8
functional groups
8
asa dfc
8
cpa-ac
5
surface
5
removal pharmaceutical
4
pharmaceutical compounds
4

Similar Publications

Adsorption properties and mechanisms of Cd by co-pyrolysis composite material derived from peanut biochar and tailing waste.

Environ Geochem Health

January 2025

College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.

Cadmium (Cd) contamination in aquatic systems is a widespread environmental issue. In this study, a solid waste iron tailings and biochar hybrid (Fe-TWBC) was successfully synthesized derived from co-pyrolysis of peanut shell and tailing waste (Fe-TW). Characterization analyses showed that the metal oxides from solid waste iron tailings successfully loaded onto the biochar surface, with more functional groups in Fe-TWBC.

View Article and Find Full Text PDF

Agro-processing industries generate a substantial quantity of biomass wastes. Conversion of these wastes into valuable material could be profitable considering both environmental and economic aspects. Among various biomass conversion methods, hydrothermal conversion can be used for co-production of biofuel and other valuable materials like carbon quantum dots (CQDs) and activated carbons.

View Article and Find Full Text PDF

In this research, fresh pistachio green shell as an agricultural waste was blended with activated carbon to study the adsorption process of mercury (II) from several aqueous solutions with various concentrations. Central Composite Design under Response Surface Methodology was statistically used to consider the independent variables involving pH, contact time, fresh pistachio green shell powder dosage, initial concentration of mercury (II) and activated carbon dosage effects on the mercury (II) removal. pH of 6.

View Article and Find Full Text PDF

Salinity stress disrupts water uptake and nutrient absorption, causing reduced photosynthesis, stunted growth, and decreased crop yields in plants. The use of indole acetic acid (IAA), arginine (AN), and mango fruit waste biochar (MFWB) can be effective methods to overcome this problem. Indole acetic acid (IAA) is a natural auxin hormone that aids cell elongation and division, thereby increasing plant height and branching.

View Article and Find Full Text PDF

To investigate the effect of space tightness on inerting of liquid CO. Pottery jar liquor warehouse was selected as the research subject, numerical simulation was utilized to study the spatial inerting and CO migration and distribution under different space tightness degrees and injection flow rates. The results revealed that after injection into the space, CO distributed like an "umbrella", the CO protective layer undergoes a dynamic process of concentration increase and thickness enhancement, achieving upward accumulation and migration of the inert medium protective layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!