Purpose: Traumatic lesions of articular cartilage represent a crucial risk factor for osteoarthritis. Even if several strategies exist to treat such damages, the optimal solution has not yet been found. A new strategy represents the scaffold-free spheroid-based autologous chondrocyte transplantation. In this method, spheroids of chondrocytes are synthesized after chondrocyte isolation and expansion, followed by the implantation in a second intervention.
Methods: Fine Jamshidi-needle biopsies from five patients (one from each patient, Ø 2 mm) treated with a spheroid-based autologous chondrocyte implantation (ACI) after traumatic lesions of the articular cartilage of the knee were analysed histologically and immunohistologically for collagen II, collagen X and aggrecan expression. The indication for a second look arthroscopy was given by arthrofibrosis or meniscus-lesions, respectively. The time between ACI and second-look arthroscopy ranged between 6 and 16 months.
Results: In all patients, the histological examinations revealed an avascular cartilage tissue with a homogenic extracellular matrix. The subchondral bone neither showed bleeding, necrosis nor hypertrophy. A homogenous alcian blue staining indicated high amounts of mucopolysaccharides and glycosaminoglycans. Collagen II staining was highly positive, whereas collagen X staining was negative in every patient, ruling out hypertrophic chondrocyte differentiation. In addition, intense aggrecan staining indicated a strong expression of this extracellular matrix component.
Conclusion: The present case series represents the first histological and immunohistological analyses of spheroid-based ACI in humans. Spheroid-based ACI revealed excellent histological results regarding the regeneration of hyaline articular cartilage. These results indicate that spheroid based ACI is a promising strategy for treating traumatic lesions of the articular cartilage of the knee.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892677 | PMC |
http://dx.doi.org/10.1007/s00167-020-05976-9 | DOI Listing |
Int J Mol Med
March 2025
Department of Joint Surgery, Sports Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, P.R. China.
Exosomes are integral to the pathophysiology of osteoarthritis (OA) due to their roles in mediating intercellular communication and regulating inflammatory processes. Exosomes are integral to the transport of bioactive molecules, such as proteins, lipids and nucleic acids, which can influence chondrocyte behavior and joint homeostasis. Given their properties of regeneration and ability to target damaged tissues, exosomes represent a promising therapeutic avenue for OA treatment.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA.
Background: Continued advancements in cartilage surgery and an accumulating body of evidence warrants a contemporary synthesis of return to sport (RTS) outcomes to provide updated prognostic data and to better understand treatment response.
Purpose: To perform an updated systematic review of RTS in athletes after knee cartilage restoration surgery.
Study Design: Systematic review; Level of evidence, 4.
J Gene Med
January 2025
Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital (The Second Affiliated Hospital of Naval Medical University), Shanghai, China.
Background And Objective: Osteoarthritis (OA) is characterized by progressive cartilage degeneration mediated by various molecular pathways, including inflammatory and autophagic processes. SET domain-containing lysine methyltransferase 7 (SETD7), a methyltransferase, has been implicated in OA pathology. This study investigates the expression pattern of SETD7 in OA and its role in promoting interleukin-1 beta (IL-1β)-induced chondrocyte injury through modulation of autophagy and inflammation.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Hand-Foot Microsurgery, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.
Background: Steroid-induced osteonecrosis of the femoral head (SIONFH) is a universal hip articular disease and is very hard to perceive at an early stage. The understanding of the pathogenesis of SIONFH is still limited, and the identification of efficient diagnostic biomarkers is insufficient. This research aims to recognize and validate the latent exosome-related molecular signature in SIONFH diagnosis by employing bioinformatics to investigate exosome-related mechanisms in SIONFH.
View Article and Find Full Text PDFActa Biomater
January 2025
Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States; School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, Storrs, CT, United States. Electronic address:
In this study we investigate the mechanics of type II collagen fibrils, an essential structural component in many load-bearing tissues including cartilage. Although type II collagen plays a crucial role in maintaining tissue integrity, the stress-stretch and failure response of type II collagen fibrils in tension is not established in the current mechanics literature. To address this knowledge gap, we conducted tensile tests on isolated collagen networks from articular cartilage and established a validated constitutive model for type II collagen fibril.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!