Scalable technologies to characterize the performance of quantum devices are crucial to creating large quantum networks and quantum processing units. Chief among the resources of quantum information processing is entanglement. Here we describe the full temporal and spatial characterization of polarization-entangled photons produced by Spontaneous Parametric Down Conversions using an intensified high-speed optical camera, Tpx3Cam. This novel technique allows for precise determination of Bell inequality parameters with minimal technical overhead, and for new characterization methods for the spatial distribution of entangled quantum information. The fast-optical camera could lead to multiple applications in Quantum Information Science, opening new perspectives for the scalability of quantum experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148376PMC
http://dx.doi.org/10.1038/s41598-020-62020-zDOI Listing

Publication Analysis

Top Keywords

spatial characterization
8
quantum processing
8
quantum
7
fast camera
4
camera spatial
4
characterization photonic
4
photonic polarization
4
polarization entanglement
4
entanglement scalable
4
scalable technologies
4

Similar Publications

Radiofrequency ablation (RFA) is a minimally invasive procedure that utilizes localized heat to treat tumors by inducing localized tissue thermal damage. The present study aimed to evaluate the temperature evolution and spatial distribution, ablation size, and reproducibility of ablation zones in ex vivo liver, kidney, and lung using a commercial device, i.e.

View Article and Find Full Text PDF

Epilepsy Prediction and Detection Using Attention-CssCDBN with Dual-Task Learning.

Sensors (Basel)

December 2024

Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing 100081, China.

Epilepsy is a group of neurological disorders characterized by epileptic seizures, and it affects tens of millions of people worldwide. Currently, the most effective diagnostic method employs the monitoring of brain activity through electroencephalogram (EEG). However, it is critical to predict epileptic seizures in patients prior to their onset, allowing for the administration of preventive medications before the seizure occurs.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate 3D information estimation from images is crucial for computer vision, and while binocular stereo vision is a common approach, it faces challenges with baseline distance affecting reliability.
  • This research proposes a new method that progressively increases the baseline in multiocular vision, introducing a rectification technique that significantly reduces distortion errors in the images.
  • The method enhances disparity estimation accuracy by 20% for multiocular images and demonstrates superior performance through extensive evaluations against existing methods.
View Article and Find Full Text PDF

Background/objectives: Most studies on the interaction between the immune system and cancer focus on T-cells, whereas studies on tumor-infiltrating B-lymphocytes (TIL-Bs) are still underrepresented. The aim of this study was to assess the prognostic impact of TIL-Bs in early- and advanced-stage oral cavity squamous cell carcinoma (OCSCC).

Methods: In total, 222 OCSCCs were studied.

View Article and Find Full Text PDF

Mesoscale Modeling for Predicting Effective Properties and Damage Behavior of Geopolymer Concrete.

Materials (Basel)

December 2024

School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth PL4 8AA, UK.

Geopolymer concrete is a sustainable construction material and is considered as a promising alternative to traditional Portland cement concrete. However, there is still not much research on the effective properties and damage behavior of geopolymer concrete with consideration of its heterogeneous characteristics by means of mesoscale models combined with the regularized microplane damage model. Here, in this research, an easy and simpler approach for generating concrete mesoscale models and characterizing the angular characteristics of aggregate particles is presented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!