Novel pathogens can cause massive declines in populations, and even extirpation of hosts. But disease can also act as a selective pressure on survivors, driving the evolution of resistance or tolerance. Bat white-nose syndrome (WNS) is a rapidly spreading wildlife disease in North America. The fungus causing the disease invades skin tissues of hibernating bats, resulting in disruption of hibernation behavior, premature energy depletion, and subsequent death. We used whole-genome sequencing to investigate changes in allele frequencies within a population of in eastern North America to search for genetic resistance to WNS. Our results show low F values within the population across time, , prior to WNS (Pre-WNS) compared to the population that has survived WNS (Post-WNS). However, when dividing the population with a geographical cut-off between the states of Pennsylvania and New York, a sharp increase in values on scaffold GL429776 is evident in the Post-WNS samples. Genes present in the diverged area are associated with thermoregulation and promotion of brown fat production. Thus, although WNS may not have subjected the entire population to selective pressure, it may have selected for specific alleles in Pennsylvania through decreased gene flow within the population. However, the persistence of remnant sub-populations in the aftermath of WNS is likely due to multiple factors in bat life history.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7263666 | PMC |
http://dx.doi.org/10.1534/g3.119.400966 | DOI Listing |
Proc Biol Sci
January 2025
Department of Forest and Wildlife Ecology, US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA.
Anthropogenically driven environmental change has imposed substantial threats on biodiversity, including the emergence of infectious diseases that have resulted in declines of wildlife globally. In response to pathogen invasion, maintaining diversity within host populations across heterogenous environments is essential to facilitating species persistence. White-nose syndrome is an emerging fungal pathogen that has caused mass mortalities of hibernating bats across North America.
View Article and Find Full Text PDFThe tricolored bat (), once common in the eastern United States, has experienced significant mortality due to white-nose syndrome (WNS), a fungal disease that primarily affects bats hibernating in caves and mines. In coastal regions of the southeastern United States, where caves and mines are scarce, tricolored bats often use roadway culverts as hibernacula. However, WNS infection dynamics in culverts are poorly understood.
View Article and Find Full Text PDFJ Fungi (Basel)
October 2024
Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.
Microbiol Spectr
October 2024
Department of Biology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
Unlabelled: Healthy wings are vital for the survival and reproduction of bats, and wing microbiome is a key component of bat wing health. However, relatively little is known about the wing microbiome of bats in western Canada where the white nose syndrome has become an increasing threat. Here, we used DNA metabarcoding to investigate the bacterial and fungal communities on the wings of three bat species: the big brown bat (), the Yuma myotis (), and the little brown myotis () from four field sites in Lillooet, British Columbia, Canada.
View Article and Find Full Text PDFConserv Biol
October 2024
Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!