Background: Cholesterol oxidase biosensors have been used to determine the level of cholesterol in different serum and food samples. Due to a wide range of industrial and clinical applications of microbial cholesterol oxidase, isolation and identification of a new microbial source (s) of cholesterol oxidase are very important.
Results: The local isolate Streptomyces sp. strain NEAE-94 is a promising source of cholesterol oxidase. It was identified based on cultural, morphological and physiological characteristics; in addition to the 16S rRNA sequence. The sequencing product had been deposited in the GenBank database under the accession number KC354803. Cholesterol oxidase production by Streptomyces anulatus strain NEAE-94 in shake flasks was optimized using surface response methodology. The different process parameters were first screened using a Plackett-Burman design and the parameters with significant effects on the production of cholesterol oxidase were identified. Out of the 15 factors screened, agitation speed, cholesterol and yeast extract concentrations had the most significant positive effects on the production of cholesterol oxidase. The optimal levels of these variables and the effects of their mutual interactions on cholesterol oxidase production were determined using Box-Behnken design. Cholesterol oxidase production by Streptomyces anulatus strain NEAE-94 was 11.03, 27.31 U/mL after Plackett-Burman Design and Box-Behnken design; respectively, with a fold of increase of 6.06 times compared to the production before applying the Plackett-Burman design (4.51 U/mL).
Conclusions: Maximum cholesterol oxidase activity was obtained at the following fermentation conditions: g/L (cholesterol 4, yeast extract 5, NaCl 0.5, KHPO 1, FeSO.7HO 0.01, MgSO.7HO 0.5), pH 7, inoculum size 4% (v/v), temperature 37°C, agitation speed of 150 rpm, medium volume 50 mL and incubation time 5 days.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7149892 | PMC |
http://dx.doi.org/10.1186/s12866-020-01775-x | DOI Listing |
Adv Sci (Weinh)
December 2024
Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, P. R. China.
The immunosuppressive residual tumor microenvironment (IRTM) is a key factor in the high recurrence and metastasis rates of hepatocellular carcinoma (HCC) after microwave ablation (MWA). Cholesterol-rich tumor fragments significantly contribute to IRTM deterioration. This study developed a cholesterol-targeted catalytic hydrogel, DA-COD-OD-HCS, to enhance the synergy between MWA and immune checkpoint inhibitors (ICIs) for HCC treatment.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2024
Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, 1 Keji Road, Fuzhou, 350117, P. R. China.
The dysregulated cholesterol metabolism in breast cancer cells drives malignancy, invasion, and metastasis, emphasizing the significance of reducing abnormal cholesterol accumulation for effective cancer treatment and metastasis inhibition. Despite its promise, cholesterol oxidase (ChOx) encounters challenge due to limited catalytic efficiency and susceptibility to harsh conditions. To overcome these hurdles, biocompatible nanoplatforms (Cu-HPB/C) tailored for efficient cholesterol depletion are introduced.
View Article and Find Full Text PDFFree Radic Res
October 2024
Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
Peroxisomes are essential organelles that help mitigate the oxidative damage caused by reactive oxygen species (ROS) through their antioxidant systems. They perform functions such as α-oxidation, β-oxidation, and the synthesis of cholesterol and ether phospholipids. During the breakdown of specific metabolites, peroxisomes generate ROS as byproducts, which can either be neutralized or contribute to oxidative stress.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
November 2024
Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA.
Age and aging are important predictors of health status, disease progression, drug kinetics, and effects. The purpose was to develop ensemble learning-based physiological age (PA) models for evaluating drug metabolism. National Health and Nutrition Examination Survey (NHANES) data were modeled with ensemble learning to obtain two PA models, PA-M1 and PA-M2.
View Article and Find Full Text PDFHeliyon
November 2024
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
Nonalcoholic steatohepatitis (NASH), a chronic liver disease characterized by the accumulation of fat in the liver, is highly prevalent on a global scale. In this study, we investigated the effects of total glucosides of Picrorhizae Rhizome (TGPR), the primary active ingredients in traditional Chinese herbal medicine derived from Pennell. TGPR is known for its efficiency in attenuating NASH, in mouse models induced by methionine-choline deficient (MCD) diet or high-fat diet (HFD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!