Surface Analysis of Biodegradable Mg-Alloys after Immersion in Simulated Body Fluid.

Materials (Basel)

Division of Materials Engineering, Department of Mechanical Engineering, Faculty of Engineering (LTH), Lund University, Ole Römers väg 1, 223 63 Lund, Sweden.

Published: April 2020

Two binary biodegradable Mg-alloys and one ternary biodegradable Mg-alloy (Mg-0.3Ca, Mg-5Zn and Mg-5Zn-0.3Ca, all in wt%) were investigated. Surface-sensitive X-ray photoelectron spectroscopy analyses (XPS) of the alloy surfaces before and after immersion in simulated body fluid (SBF) were performed. The XPS analysis of the samples before the immersion in SBF revealed that the top layer of the alloy might have a non-homogeneous composition relative to the bulk. Degradation during the SBF immersion testing was monitored by measuring the evolution of H. It was possible to evaluate the thickness of the sample degradation layers after the SBF immersion based on scanning electron microscopy (SEM) of the tilted sample. The thickness was in the order of 10-100 µm. The typical bio-corrosion products of all of the investigated alloys consisted of Mg, Ca, P and O, which suggests the formation of apatite (calcium phosphate hydroxide), magnesium hydrogen phosphate hydrate and magnesium hydroxide. The bioapplicability of the analyzed alloys with regard to surface composition and degradation kinetics is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178709PMC
http://dx.doi.org/10.3390/ma13071740DOI Listing

Publication Analysis

Top Keywords

biodegradable mg-alloys
8
immersion simulated
8
simulated body
8
body fluid
8
sbf immersion
8
immersion
5
surface analysis
4
analysis biodegradable
4
mg-alloys immersion
4
fluid binary
4

Similar Publications

Towards Accurate Biocompatibility: Rethinking Cytotoxicity Evaluation for Biodegradable Magnesium Alloys in Biomedical Applications.

J Funct Biomater

December 2024

CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.

Magnesium and its alloys represent promising candidates for biomedical implants due to their biodegradability and mechanical properties, which are similar to natural bone. However, their rapid degradation process characterized by dynamic pH fluctuations and significant hydrogen gas evolution during biocorrosion adversely affects both in vitro and in vivo assessments. While the ISO 10993-5 and 12 standards provide guidelines for evaluating the in vitro biocompatibility of biodegradable materials, they also introduce testing variability conditions that yield inconsistent results.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a significant condition that profoundly impacts synovial joints, including cartilage and subchondral bone plate. Biomaterials that can impede OA progression are a promising alternative or supplement to anti-inflammatory and surgical interventions. Magnesium (Mg) alloys known for bone regeneration potential were assessed in the form of Mg microparticles regarding their impact on tissue regeneration and prevention of OA progression.

View Article and Find Full Text PDF

Background: Titanium (Ti-6Al-4 V) is used for fixation in LeFort I osteotomy, a procedure for treating midface deformities. This study assessed the biomechanical stabilities of two Mg alloys (WE43 and ZK60) as biodegradable alternatives and compared them against Ti using finite element analyses. The LeFort I osteotomy procedure was simulated, and various plate and screw configurations were tested.

View Article and Find Full Text PDF

Reduction reactions dominate the interactions between Mg alloys and cells: Understanding the mechanisms.

Bioact Mater

March 2025

Shenzhen Key Laboratory of Marine Biomaterials, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, PR China.

Magnesium (Mg) alloys are popular biodegradable metals studied for orthopedic and cardiovascular applications, mainly because Mg ions are essential trace elements known to promote angiogenesis and osteogenesis. However, Mg corrosion consists of oxidation and reduction reactions that produce by-products, such as hydrogen gas, reactive oxygen species, and hydroxides. It is still unclear how all these by-products and Mg ions concomitantly alter the microenvironment and cell behaviors spatially and temporally.

View Article and Find Full Text PDF

Synthesis methods of Mg-based scaffolds and their applications in tissue engineering: A review.

Proc Inst Mech Eng H

December 2024

Department of Materials Science and Engineering, Faculty of Engineering, Urmia University, Urmia, West Azerbaijan, Iran.

Repair and regeneration of damaged tissues due to disease and accidents have become a severe challenge to tissue engineers and researchers. In recent years, biocompatible metal materials such as stainless steels, cobalt alloys, titanium alloys, tantalum alloys, nitinol, and Mg alloys have been studied for tissue engineering applications; as suitable candidates in orthopedic and dentistry implants. These materials and their alloys are used for load-bearing and physiological roles in biological applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!