A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Co-Microencapsulation of Anthocyanins from Black Currant Extract and Lactic Acid Bacteria in Biopolymeric Matrices. | LitMetric

Anthocyanins from black currant extract and lactic acid bacteria were co-microencapsulated using a gastro-intestinal-resistant biocomposite of whey protein isolate, inulin, and chitosan, with an encapsulation efficiency of 95.46% ± 1.30% and 87.38% ± 0.48%, respectively. The applied freeze-drying allowed a dark purple stable powder to be obtained, with a satisfactory content of phytochemicals and 11 log colony forming units (CFU)/g dry weight of powder (DW). Confocal laser microscopy displayed a complex system, with several large formations and smaller aggregates inside, consisting of biologically active compounds, lactic acid bacteria cells, and biopolymers. The powder showed good storage stability, with no significant changes in phytochemicals and viable cells over 3 months. An antioxidant activity of 63.64 ± 0.75 mMol Trolox/g DW and an inhibitory effect on α-amylase and α-glucosidase of 87.10% ± 2.08% and 36.96% ± 3.98%, respectively, highlighted the potential biological activities of the co-microencapsulated powder. Significantly, the in vitro digestibility profile showed remarkable protection in the gastric environment, with controlled release in the intestinal simulated environment. The powder was tested by addition into a complex food matrix (yogurt), and the results showed satisfactory stability of biologically active compounds when stored for 21 d at 4 °C. The obtained results confirm the important role of microencapsulation in ensuring a high degree of protection, thus allowing new approaches in developing food ingredients and nutraceuticals, with enhanced functionalities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181145PMC
http://dx.doi.org/10.3390/molecules25071700DOI Listing

Publication Analysis

Top Keywords

lactic acid
12
acid bacteria
12
anthocyanins black
8
black currant
8
currant extract
8
extract lactic
8
biologically active
8
active compounds
8
powder
5
co-microencapsulation anthocyanins
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!