Alzheimer's disease (AD) is the most common neurodegenerative disorder in the world, and there is currently no potent medicine for the treatment of ADs. Curcumin, a primary chemical contained in the ancient Indian herb known as turmeric, has been extensively studied and shown to be effective in inhibiting the aggregations of amyloid-β and tau proteins, both of which are observed in the brains of AD patients. In the present study, we focused on the tau protein and investigated its specific interactions with curcumin derivatives, using molecular simulations based on molecular docking, molecular mechanics and ab initio fragment molecular orbital calculations. Based on the results, we attempted to propose novel potent inhibitors against the tau protein aggregation. Our molecular simulations provide useful information for developing novel medicines for the treatment of ADs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmgm.2020.107611 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!