Low-cost air quality sensors are increasingly being used in many applications; however, many of their performance characteristics have not been adequately investigated. This study was conducted over a period of 13 months using low-cost air quality monitors, each comprising two low-cost sensors, which were subjected to a wide range of pollution sources and concentrations, relative humidity and temperature at four locations in Australia and China. The aim of the study was to establish the performance characteristics of the two low-cost sensors (a Plantower PMS1003 for PM and an Alphasense CO-B4 for carbon monoxide, CO) and the KOALA monitor as a whole under various conditions. Parameters evaluated included the inter-variability between individual monitors, the accuracy of monitors in comparison with the reference instruments, the effect of temperature and RH on the performance of the monitors, the responses of the PM sensors to different types of aerosols, and the long-term stability of the PM and CO sensors. The monitors showed high inter-correlations (r > 0.91) for both PM and CO measurements. The monitor performance varied with location, with moderate to good correlations with reference instruments for PM (0.44< R < 0.91) and CO (0.37< R < 0.90). The monitors performed well at relative humidity < 75% and high temperature conditions; however, two monitors in Beijing failed at low temperatures, probably due to electronic board failure. The PM sensor was less sensitive to marine aerosols and fresh vehicle emissions than to mixed urban background emissions, aged traffic emissions and industrial emissions. The long-term stability of the PM and CO sensors was good, while CO relative errors were affected by both high and low temperatures. Overall, the KOALA monitors performed well in the environments in which they were operated and provided a valuable contribution to long-term air quality monitoring within the elucidated limitations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2020.109438 | DOI Listing |
Small Methods
January 2025
Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou, 350108, P. R. China.
The cost-effective and scalable synthesis and patterning of soft nanomaterial composites with improved electrical conductivity and mechanical stretchability remains challenging in wearable devices. This work reports a scalable, low-cost fabrication approach to directly create and pattern crumpled porous graphene/NiS nanocomposites with high mechanical stretchability and electrical conductivity through laser irradiation combined with electrodeposition and a pre-strain strategy. With modulated mechanical stretchability and electrical conductivity, the crumpled graphene/NiS nanocomposite can be readily patterned into target geometries for application in a standalone stretchable sensing platform.
View Article and Find Full Text PDFSmall
January 2025
Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Vassilika Vouton, Heraklion, 70013, Greece.
Metal halide perovskites (MHPs) have attracted significant attention owing to their simple manufacturing process and unique optoelectronic properties. Their reversible electrical or optical property changes in response to oxidizing or reducing environments make them prospective materials for gas detection technologies. Despite advancements in perovskite-based sensor research, the mechanisms behind perovskite-gas interactions, vital for sensor performance, are still inconclusive.
View Article and Find Full Text PDFJ Biomech
January 2025
Arts et Métiers Institute of Technology, Université Sorbonne Paris Nord, IBHGC - Institut de Biomécanique Humaine Georges Charpak, HESAM Université, 151 boulevard de l'Hôpital, 75013 Paris, France. Electronic address:
Improper socket fitting in lower-limb prostheses can lead to significant complications, including pain, skin lesions, and pressure ulcers. Current suspension and socket design practices rely predominantly on visual inspection of the residual limb and patient feedback. Monitoring stress distribution at the residual limb/socket interface offers a more objective approach.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
The commercialization of metasurfaces is crucial for real-world applications such as wearable sensors, pigment-free color pixels, and augmented and virtual reality devices. Nanoparticle-embedded resin-based nanoimprint lithography (PER-NIL) has shown itself to be a low-cost, high-throughput manufacturing method enabling the replication of high-index nanostructures. It has been extensively integrated into the fabrication of hologram metasurfaces, metalenses, and sensors due to its procedural simplicity.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, 401331, Chongqing, China.
The presence of excessive residues of pesticides poses a great threat to ecology and human health. Herein, a novel, low-cost, simple and precise quantification sensing platform was established for differentiating and monitoring four common pesticides in China. Particularly, the array-based ratio fluorescent sensor array detector (ARF-SAD) based on cross-reaction characteristics of porphyrins and other porphyrin derivative was successfully constructed and integrated into the platform.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!