Involvement of Shh/Gli1 signaling in the permeability of blood-spinal cord barrier and locomotion recovery after spinal cord contusion.

Neurosci Lett

Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China. Electronic address:

Published: May 2020

Shh/Gli1 signaling plays important roles in development of spinal cord. How it is involved in spinal cord injury (SCI) remains unclear. In this study, we explored the roles of Shh/Gli1 signaling in SCI by using Shh signaling reporter Gli1 mice and Gli1 mutant Gli1 mice. For detecting the Shh/Gli1 signaling after SCI, X-gal staining and double-immunostaining of Shh/PDGFR-β, Shh/GFAP and LacZ/GFAP was conducted at 3 days post injury (dpi) on Gli1 mice. To investigate the effects of Gli1 mutation on pathological changes after SCI, astrocytic proliferation and the content of intra-parenchymal Evans Blue were evaluated at 7dpi in wild-type and Gli1 mice. Furthermore, locomotor recovery was assessed by BMS scoring at 1, 3, 5 and 7dpi. The results of X-gal staining and immunohistochemistry showed that Shh/Gli1 signaling was mainly activated in reactive astrocytes after SCI. The 5-bromo-2-deoxyuridine (BrdU) incorporation assay showed that mutation of Gli1 did not affect the proliferation of astrocytes. However, the leakage of Evans Blue was significantly increased in the injured cord of Gli1 mice compared to wild-type mice. In addition, locomotor recovery was significantly impaired in the Gli1 mice. The findings demonstrated that Shh/Gli1 signaling could be induced in reactive astrocytes by SCI, and plays important role in permeability of blood-spinal cord barrier (BSCB) and locomotor recovery after SCI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2020.134947DOI Listing

Publication Analysis

Top Keywords

shh/gli1 signaling
24
gli1 mice
24
spinal cord
12
locomotor recovery
12
gli1
9
permeability blood-spinal
8
blood-spinal cord
8
cord barrier
8
signaling sci
8
x-gal staining
8

Similar Publications

There is an urgent necessity to devise efficient tactics to tackle the inevitable development of resistance to osimertinib, which is a third-generation epidermal growth factor receptor (EGFR) inhibitor used in treating EGFR-mutant nonsmall cell lung cancer (NSCLC). This study demonstrates that combining itraconazole with osimertinib synergistically reduces the proliferation and migration, enhances the apoptosis of osimertinib-resistant cells, and effectively inhibits the growth of osimertinib-resistant tumors. Mechanistically, itraconazole combined with osimertinib promotes the proteasomal degradation of sonic hedgehog (SHH), resulting in inactivation of the SHH/Dual-specificity phosphatase 13B (DUSP13B)/p-STAT3 and Hedgehog pathways, suppressing Myc proto-oncogene protein (c-Myc).

View Article and Find Full Text PDF

Backgrounds: Heart failure (HF) is characterized by progressive cardiac hypertrophy and fibrosis, yet the underlying pathological mechanisms remain unclear. Exosomes are pivotal in cellular communication and are key signaling carriers in HFs. This study investigated the roles of exosomes in HF.

View Article and Find Full Text PDF

Calcium Fructoborate Improves Knee Osteoarthritis in Rats by Activating Hedgehog Signaling Through DDIT3.

Biol Trace Elem Res

November 2024

Department of Sports Medicine, Yantaishan Hospital, 10087 Science and Technology Avenue, Laishan Distirct, Yantai, 264003, Shandong, China.

The mechanism of CFB in treating knee osteoarthritis is not yet clear and deserves further discussion. The C28/I2 cell was stimulated by TNF-α and the MIA-induced OA rat model were constructed, and then treated with a certain concentration of CFB. The effects of CFB on chondrocyte apoptosis, inflammatory response, and collagen matrix degradation were assessed.

View Article and Find Full Text PDF

This study aims to investigate the effects of astragalus polysaccharide (APS) on diabetic retinopathy through the SHH-Gli1-AQP1 pathway. The anti-type 2 diabetes mellitus (T2DM) targets of APS were identified through comprehensive searches of drug and disease-related databases. A protein-protein interaction network was then constructed, followed by GO and KEGG enrichment analyses.

View Article and Find Full Text PDF

Background: Medulloblastoma is a pediatric malignant brain tumor associated with an aberrantly activated Shh pathway. The Shh pathway acts via downstream effector molecules, including Pax6 and Nkx2.2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!