Modulation of the ~20-Hz brain rhythm has been used to evaluate the functional state of the sensorimotor cortex both in healthy subjects and patients, such as stroke patients. The ~20-Hz brain rhythm can be detected by both magnetoencephalography (MEG) and electroencephalography (EEG), but the comparability of these methods has not been evaluated. Here, we compare these two methods in the evaluating of ~20-Hz activity modulation to somatosensory stimuli. Rhythmic ~20-Hz activity during separate tactile and proprioceptive stimulation of the right and left index finger was recorded simultaneously with MEG and EEG in twenty-four healthy participants. Both tactile and proprioceptive stimulus produced a clear suppression at 300-350 ms followed by a subsequent rebound at 700-900 ms after stimulus onset, detected at similar latencies both with MEG and EEG. The relative amplitudes of suppression and rebound correlated strongly between MEG and EEG recordings. However, the relative strength of suppression and rebound in the contralateral hemisphere (with respect to the stimulated hand) was significantly stronger in MEG than in EEG recordings. Our results indicate that MEG recordings produced signals with higher signal-to-noise ratio than EEG, favoring MEG as an optimal tool for studies evaluating sensorimotor cortical functions. However, the strong correlation between MEG and EEG results encourages the use of EEG when translating studies to clinical practice. The clear advantage of EEG is the availability of the method in hospitals and bed-side measurements at the acute phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2020.116804 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!