Enzymes are essential and ubiquitous biocatalysts involved in various metabolic pathways and used in many industrial processes. Here, we reframe enzymes not just as biocatalysts transforming bioproducts but also as sensitive probes for exploring the structure and composition of complex bioproducts, like meat tissue, dairy products and plant materials, in both food and non-food bioprocesses. This review details the global strategy and presents the most recent investigations to prepare and use enzymes as relevant probes, with a focus on glycoside-hydrolases involved in plant deconstruction and proteases and lipases involved in food digestion. First, to expand the enzyme repertoire to fit bioproduct complexity, novel enzymes are mined from biodiversity and can be artificially engineered. Enzymes are further characterized by exploring sequence/structure/dynamics/function relationships together with the environmental factors influencing enzyme interactions with their substrates. Then, the most advanced experimental and theoretical approaches developed for exploring bioproducts at various scales (from nanometer to millimeter) using active and inactive enzymes as probes are illustrated. Overall, combining multimodal and multiscale approaches brings a better understanding of native-form or transformed bioproduct architecture and composition, and paves the way to mainstream the use of enzymes as probes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biotechadv.2020.107546DOI Listing

Publication Analysis

Top Keywords

enzymes
8
enzymes probes
8
enzymes unravel
4
bioproducts
4
unravel bioproducts
4
bioproducts architecture
4
architecture enzymes
4
enzymes essential
4
essential ubiquitous
4
ubiquitous biocatalysts
4

Similar Publications

Epidemiology of caprine brucellosis in family farms in the south east of Algeria.

Vet Ital

September 2024

Department of Veterinary Management of Animal Resources, Faculty of Veterinary Medicine, Liège, Belgium.

This cross-sectional study aimed to estimate the seroprevalence and the potential risk factors of Brucella infection among goats in family farms in the southern east of Algeria. A total of 196 sera samples were randomly collected from 59 family farms and tested in parallel by Rose Bengal test (RBT) and indirect ELISA (iELISA). A structured questionnaire was used to collect information on potential risk factors.

View Article and Find Full Text PDF

Mapping the Protein Phosphatase 1 Interactome in Human Cytomegalovirus Infection.

Viruses

December 2024

Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.

Protein phosphorylation is a crucial regulatory mechanism in cellular homeostasis. The human cytomegalovirus (HCMV) incorporates protein phosphatase 1 (PP1) into its tegument, yet the biological relevance and mechanisms of this incorporation remain unclear. Our study offers the first characterization of the PP1 interactome during HCMV infection and its alterations.

View Article and Find Full Text PDF

Development of a Synthetic VP1 Protein Peptide-Based ELISA to Detect Antibodies Against Porcine Bocavirus Group 3.

Viruses

December 2024

Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China.

Porcine bocavirus (PBoV), classified within the genus Bocaparvovirus, has been reported worldwide. PBoV has been divided into group 1, group 2, and group 3. PBoV group 3 (G3) viruses are the most prevalent in China.

View Article and Find Full Text PDF

This study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication.

View Article and Find Full Text PDF

Numerous host factors function as intrinsic antiviral effectors to attenuate viral replication. MARCH8 is an E3 ubiquitin ligase that has been identified as a host restriction factor that inhibits the replication of various viruses. This study elucidated the mechanism by which MARCH8 restricts respiratory syncytial virus (RSV) replication through selective degradation of the viral small hydrophobic (SH) protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!