Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Diabetic retinopathy (DR) is a common complication of diabetes and a leading cause of blindness among the working-age population. Diabetic patients often experience functional deficits in dark adaptation, contrast sensitivity, and color perception before any microvascular pathologies on the fundus become detectable. Previous studies showed that the regeneration of 11-cis-retinal and visual pigment is impaired in a type 1 diabetes animal model, which negatively affects visual function at the early stage of DR. Here, Akita mice, type 1 diabetic model, were treated with the visual pigment chromophore, 9-cis-retinal. This treatment rescued a- and b-wave amplitudes of scotopic electroretinography responses, compared with vehicle-treated Akita mice. In addition, the administration of 9-cis-retinal alleviated oxidative stress significantly as shown by reduced 3-nitrotyrosine levels in the retina of Akita mice. Furthermore, the 9-cis-retinal treatment decreased retinal apoptosis as shown by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and DNA fragment enzyme-linked immunosorbent assay. Overall, these findings showed that 9-cis-retinal administration restored visual pigment formation and decreased oxidative stress and retinal degeneration, which resulted in improved visual function in diabetic mice, suggesting that chromophore deficiency plays a causative role in visual defects in early DR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369574 | PMC |
http://dx.doi.org/10.1016/j.ajpath.2020.03.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!