The blood-brain barrier (BBB) presents a barrier for circulating factors, but simultaneously challenges drug delivery. How the BBB is altered in Alzheimer disease (AD) is not fully understood. To facilitate this analysis, we derived brain endothelial cells (iBECs) from human induced pluripotent stem cells (hiPSCs) of several patients carrying the familial AD PSEN1 mutation. We demonstrate that, compared with isogenic PSEN1 corrected and control iBECs, AD-iBECs exhibit altered tight and adherens junction protein expression as well as efflux properties. Furthermore, by applying focused ultrasound (FUS) that transiently opens the BBB and achieves multiple therapeutic effects in AD mouse models, we found an altered permeability to 3-5 kDa dextran as a model cargo and the amyloid-β (Aβ) peptide in AD-iBECs compared with control iBECs. This presents human-derived in vitro models of the BBB as a valuable tool to understand its role and properties in a disease context, with possible implications for drug delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220857PMC
http://dx.doi.org/10.1016/j.stemcr.2020.03.011DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
brain endothelial
8
control ibecs
8
altered
4
altered brain
4
endothelial cell
4
cell phenotype
4
phenotype familial
4
familial alzheimer
4
alzheimer mutation
4

Similar Publications

Combination therapy, which involves using multiple therapeutic modalities simultaneously or sequentially, has become a cornerstone of modern cancer treatment. Graphene-based nanomaterials (GBNs) have emerged as versatile platforms for drug delivery, gene therapy, and photothermal therapy. These materials enable a synergistic approach, improving the efficacy of treatments while reducing side effects.

View Article and Find Full Text PDF

It is crucial to comprehend protein misfolding and aggregation in the domains of biomedicine, pharmaceuticals, and proteins. Amyloid fibrils are formed when proteins misfold and assemble, resulting in the debilitating illness known as "amyloidosis". This work investigates lysozyme fibrillation with pluronics (F68 and F127).

View Article and Find Full Text PDF

Drug development for congenital toxoplasmosis is challenging since first-line therapy has a high rate of adverse effects and exhibits suboptimal efficacy. Bumped kinase inhibitors (BKIs), targeting protein kinases with small gatekeeper residues, have been found to be effective against . The efficacy of BKI-1748 administered later than 2 days post-infection (p.

View Article and Find Full Text PDF

Unregulated male sexual enhancement treatments: Perils and pitfalls for patients and providers.

J Am Assoc Nurse Pract

January 2025

Center for AIDS Preventions Studies (CAPS), University of California San Francisco, San Francisco, California.

As the demand for "quick-fixes" and instant gratification intensifies among consumers of the US health care delivery system, health care providers remain essential to ensuring patients receive safe, evidenced-based care. Erectile dysfunction is a common health condition affecting as many as 42% of US men. As such, it is unsurprising that American health care consumers affected by erectile dysfunction (ED) may be tempted by "quick fixes" to ameliorate their symptoms-particularly if such fixes are perceived to be less embarrassing, more accessible, and/or more affordable.

View Article and Find Full Text PDF

Objective: This study aims to develop a dual-ligand-modified targeted drug delivery system by integrating photosensitizers and chemotherapeutic drugs to enhance anti-glioma effects. The system is designed to overcome the blood-brain barrier (BBB) that hinders effective drug delivery, increase drug accumulation in glioma cells, and thereby enhance therapeutic efficacy.

Methods: Liposomes were prepared using the film dispersion-ammonium sulfate gradient technique, co-loading the photosensitizer indocyanine green (ICG) and the chemotherapeutic drug mitoxantrone (MTO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!