In microplastics (MPs) research, there is an urgent need to critically reconsider methodological approaches and results published, since public opinion and political decisions might be based on studies using debatable methods and reporting questionable results. For instance, recent studies claim that MPs induce intestinal damage and that relatively large MPs are transferred to, e.g., livers in fish. However, there is methodological criticism and considerable concern whether MP transfer to surrounding tissues is plausible. Likewise, there is an ongoing discussion in MP research if MPs act as vectors for adsorbed hazardous chemicals. In this study, effects of very small (4-6 μm) and very large (125-500 μm) benzo(a) pyrene (BaP)-spiked polyethylene (PE) particles administered via different uptake routes (food chain vs. direct uptake) were compared in a 21-day zebrafish (Danio rerio) feeding experiment. Particular care was taken to prevent cross-contamination of MPs during dissection and histological sample preparation. In contrast to numerous reports in literature describing similar approaches, independent of exposure route and MP size, no adverse effects could be detected. Likewise, no BaP accumulation could be documented, and MPs were exclusively seen in the lumen of the intestinal tract, which, however, did not induce any histopathological effects. Results indicate that in fish MPs are taken up, pass along the intestinal lumen and are excreted without any symptoms of adverse effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2020.111022 | DOI Listing |
Nat Prod Res
January 2025
Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil.
(L.) R. Br.
View Article and Find Full Text PDFJ Appl Toxicol
January 2025
Changjiang Basin Ecology and Environment Monitoring and Scientific Research Center, Changjiang Basin Ecology and Environment Administration, Ministry of Ecology and Environment, Wuhan, China.
Fluoxetine (FLX), a typical selective serotonin reuptake inhibitors, has been frequently detected in aquatic environment and wild fish. However, little is known about its effect on thyroid endocrine system. In the present study, zebrafish (Danio rerio) embryos were exposed to 1, 3, 10, and 30 μg/L of FLX for 6 days.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China. Electronic address:
Tyramine, β-phenylethylamine, octopamine and other trace amines are endogenous substances recently recognized as important novel neurotransmitters in the brain. Trace amines act via multiple selective trace amine-associated receptors (TAARs) of the G protein-coupled receptor family. TAARs are expressed in various brain regions and modulate neurotransmission, neuronal excitability, adult neurogenesis, cognition, mood, locomotor activity and olfaction.
View Article and Find Full Text PDFAnim Reprod
January 2025
Programa de Pós-graduação em Biotecnologia - PPGBiotec, Universidade Federal do Delta do Parnaíba - UFDPar, Parnaíba, PI, Brasil.
This study aimed to compare the effects of nandrolone decanoate on the morphology and physiology of ovarian tissues in two experimental models, Zebrafish and rats, after in vitro cultivation. A total of 136 animals were used ( rats, n=36, and Zebrafish, n=100). In both experiments, the animals were divided into two groups (Control and Deca) and were exposed to nandrolone decanoate for seven weeks.
View Article and Find Full Text PDFChemosphere
January 2025
University of North Texas, Department of Biological Sciences and Advanced Environmental Research Institute, 155 Union Circle #305220, Denton, TX, 76203, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!