The objective of this paper is to determine whether contaminant data on mussels and sediments can be used interchangeably, or not, when assessing the degree of anthropogenic contamination of a water body. To obtain adequate coverage of the entire Gulf of Maine, Bay of Fundy sediment samples were collected, analyzed and combined with similar data from four coastal monitoring programs. This required careful interpretation but provided robust results consistent with published literature. A strong correspondence was found between sediment and mussel concentrations for polycyclic aromatic hydrocarbons, moderate to weak correspondence for polychlorinated biphenyls, and except for mercury and zinc, little to no correspondence was found for metals. We conclude that mussel contaminant data are likely sufficient for providing information on the spatial and temporal distribution of chemical contaminants, in coastal waters, under a broad range of environmental conditions and contaminant levels, and unlike sediments, provide direct information on contaminant bioavailability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10775826PMC
http://dx.doi.org/10.1016/j.marpolbul.2020.110956DOI Listing

Publication Analysis

Top Keywords

chemical contaminants
8
gulf maine
8
contaminant data
8
monitoring chemical
4
contaminants gulf
4
maine sediments
4
sediments mussels
4
mussels mytilus
4
mytilus edulis
4
edulis evaluation
4

Similar Publications

Trace elements increase replicability of microbial growth.

Open Biol

January 2025

Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, Köln 50937, Germany.

Trace elements are often omitted from chemically defined growth media. From established properties of trace elements, we deduce that this omission makes experiments unnecessarily sensitive to unavoidable contamination with trace elements. We confirm this experimentally by growing 11 bacterial strains in high replicate with and without supplementing trace elements, keeping all other conditions as fixed as possible to isolate the effect of trace elements.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are environmentally persistent contaminants that are often referred to as "Forever Chemicals". They are used in industrial and household products; however, they are resistant to degradation. Thus, PFAS contamination has become a wide-spread issue.

View Article and Find Full Text PDF

Assessment of potential ecological risk by metals in Ilha Grande Bay (Southeast Brazil).

Mar Pollut Bull

January 2025

Universidade de Aveiro, GeoBioTec, Departamento de Geociências, Campus de Santiago, 3810-193 Aveiro, Portugal. Electronic address:

This study evaluates contamination and potential ecological risk in Ilha Grande Bay (BIG) in southeastern Brazil. To achieve these objectives, we analyzed physicochemical, sediment textural, and geochemical data from 134 stations distributed throughout the bay. The results reveal significant environmental degradation in the coastal areas of Paraty, Saco do Mamanguá, Angra dos Reis City, and Abraão Cove (at Ilha Grande island).

View Article and Find Full Text PDF

Microbial metabolism in wormcast affected the perturbation on soil organic matter by microplastics under decabromodiphenyl ethane stress.

J Hazard Mater

January 2025

State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China. Electronic address:

Large-scale plastic wastes annually inevitably induce co-pollution of microplastics (MPs) and novel brominated flame retardants (NBFRs), while gaps remain concerning their effect on terrestrial function. We investigated the impact of polylactic acid (PLA) or polyethylene (PE) MPs after aging in soil-earthworm microcosms under decabromodiphenyl ethane (DBDPE) contamination. MPs altered the food (i.

View Article and Find Full Text PDF

Global consumption and progressive migration of antibiotics through aquatic systems have contributed to their rapid spread, posing significant threats to environmental and human health, and antibiotics have been recognized as emerging pollutants. Hence, extensive approaches have been proposed for antibiotic treatment in water, yielding great achievements. This review systematically summarized current knowledge from contamination characteristics to treatment strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!