Increased temperatures alter viable microbial biomass, ammonia oxidizing bacteria and extracellular enzymatic activities in Antarctic soils.

FEMS Microbiol Ecol

Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, Natural Sciences 2 Building, University of Pretoria, Pretoria, 0028, South Africa.

Published: May 2020

The effects of temperature on microorganisms in high latitude regions, and their possible feedbacks in response to change, are unclear. Here, we assess microbial functionality and composition in response to a substantial temperature change. Total soil biomass, amoA gene sequencing, extracellular activity assays and soil physicochemistry were measured to assess a warming scenario. Soil warming to 15°C for 30 days triggered a significant decrease in microbial biomass compared to baseline soils (0°C; P < 0.05) after incubations had induced an initial increase. These changes coincided with increases in extracellular enzymatic activity for peptide hydrolysis and phenolic oxidation at higher temperatures, but not for the degradation of carbon substrates. Shifts in ammonia-oxidising bacteria (AOB) community composition related most significantly to changes in soil carbon content (P < 0.05), which gradually increased in microcosms exposed to a persistently elevated temperature relative to baseline incubations, while temperature did not influence AOBs. The concentration of soil ammonium (NH4+) decreased significantly at higher temperatures subsequent to an initial increase, possibly due to higher conversion rates of NH4+ to nitrate by nitrifying bacteria. We show that higher soil temperatures may reduce viable microbial biomass in cold environments but stimulate their activity over a short period.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsec/fiaa065DOI Listing

Publication Analysis

Top Keywords

microbial biomass
8
increased temperatures
4
temperatures alter
4
alter viable
4
viable microbial
4
biomass ammonia
4
ammonia oxidizing
4
oxidizing bacteria
4
bacteria extracellular
4
extracellular enzymatic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!