In this work, we report on the development of a catheter-based sensor designed for measuring the concentration of histamine in the human duodenum. Certain gut disorders, such as the irritable bowel syndrome (IBS), are associated with elevated levels of intestinal histamine due to chronic immune activation. As it is still impossible to determine histamine concentrations in vivo, a nasointestinal catheter with histamine-sensing capabilities has the potential to become a valuable diagnostic instrument. Regarding the sensing principle, we selected impedance spectroscopy using voltages that are compatible with intra-body applications with molecularly imprinted polymers (MIPs) as recognition elements. MIPs are synthetic receptors that offer the advantages of robustness, high specificity and selectivity for histamine as a target. In this specific case, the MIPs were synthesized from acryclic acid monomers, which guarantees a uniform binding capacity within the pH range of intestinal fluid. We have validated the catheter sensor on human intestinal liquids spiked with histamine in a testing setup that mimics the environment inside the duodenum. The dose-response curves show an analytical range between 5 and 200 nM of histamine, corresponding to physiologically normal conditions while higher concentrations correlate with disease. The key output signal of the sensor is the resistive component of the MIP-functionalized titanium electrodes as derived from the equivalent-circuit modelling of full-range impedance spectra. Future applications could be catheters tailored to cardiovascular, urological, gastrointestinal, and neurovascular applications. This, in combination with the versatility of the MIPs, will make this sensor platform a versatile diagnostic tool.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2020.112152 | DOI Listing |
J Therm Biol
January 2025
College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, PR China. Electronic address:
Climate warming and frequent incidents of extreme high temperatures are serious global concerns. Heat stress induced by high temperature has many adverse effects on animal physiology, especially in aquatic poikilotherms. Chinese mitten crab (Eriocheir sinensis) is sensitive to high temperatures, this study evaluated the harmful effects of heat stress on the neurotoxicity, intestinal health, microbial diversity, and metabolite profiles.
View Article and Find Full Text PDFClin Exp Med
January 2025
The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
Upon stimulation and activation, mast cells (MCs) release soluble mediators, including histamine, proteases, and cytokines. These mediators are often stored within cytoplasmic granules in MCs and may be released in a granulated form. The secretion of cytokines and chemokines occurs within hours following activation, with the potential to result in chronic inflammation.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
School of Pharmacy, Shandong University of Traditional Chinese Medicine Ji'nan 250355, China State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd. Linyi 276005, China.
This study aims to investigate the protective effect and potential mechanism of Jingfang Granules(JF) on the mouse model of chronic fatigue syndrome(CFS). Mice were randomized into normal, model, and low-, medium-, and high-dose(0.9, 1.
View Article and Find Full Text PDFComput Biol Chem
January 2025
Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
The current study focuses on the potential of second-generation antihistamines, which exhibit fewer side effects compared to first-generation drugs, to block the Histamine H receptor (HR) and mitigate allergic responses. We screened several derivatives of second-generation drugs taking Desloratadine (Deslo) and Acrivastine (Acra) as seed compounds. We performed molecular docking, drug-likeness, quantum chemical calculations, UV-visible and infrared spectroscopy, molecular electrostatic potential (MEP) mapping for understanding drug derivatives potential as efficient drugs and molecular dynamics (MD).
View Article and Find Full Text PDFNutrients
December 2024
Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Campus de l'Alimentació de Torribera, Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain.
Background/objectives: Histamine intolerance is primarily caused by a deficiency in the diamine oxidase (DAO) enzyme at the intestinal level. The reduced histamine degradation in the gut leads to its accumulation in plasma, thereby causing multiple clinical manifestations, such as urticaria, diarrhea, headache, dyspnea, or tachycardia, among others. The dietary management of this food intolerance consists of the follow-up of a low-histamine diet, often combined with DAO supplementation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!