Allylgermanes with a 4-, 5-, and 6-coordinated germanium center were characterized by X-ray crystallography. Cationic 6-coordinated group 14 allylmetals, which were hitherto assumed to be a transition-state structure of allylations, were successfully isolated. Forming high coordination states significantly enhanced the reactivity of the allylgermanes. In contrast to the 4-coordinated allylgermanes with low reactivity, the highly coordinated species readily reacted with several aldehydes. Furthermore, the high coordination states exerted a significant effect on the E/Z selectivity of allylation depending on external additives. The coordination structure had a dramatic influence on the electronic and steric environments around the Ge center, enabling the geometrically controlled allylation of aldehydes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202000392 | DOI Listing |
Nat Commun
January 2025
State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.
In this study, we introduce a highly effective non-metallic iodine single-atom catalyst (SAC), referred to as I-NC, which is strategically confined within a nitrogen-doped carbon (NC) scaffold. This configuration features a distinctive C-I coordination that optimizes the electronic structure of the nitrogen-adjacent carbon sites. As a result, this arrangement enhances electron transfer from peroxymonosulfate (PMS) to the active sites, particularly the electron-deficient carbon.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina. Electronic address:
The interest in chemical interactions between inorganic sulfur species and heme compounds has grown significantly in recent years due to their physiological relevance. The model system ferric N-acetyl microperoxidase 11 (NAcMP11Fe) enables the exploration of the mechanistic aspects of the interaction between the ferric heme group and binding sulfur ligands, without the constraints imposed by a protein matrix and the stabilizing effects of distal amino acids. In this study, we investigated the coordination of disulfane (HSSH) and its conjugate base hydrodisulfide (HSS) to NAcMP11Fe.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Particle Engineering Laboratory (China Petroleum and Chemical Industry Federation), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, PR China. Electronic address:
High-performance electrocatalysts are highly concerned in oxygen reduction reaction (ORR) related energy applications. However, facile synthesis of hierarchically porous structures with highly exposed active sites and improved mass transfer is challenging. Herein, we develop a novel assembly-foaming strategy for synthesizing hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts.
View Article and Find Full Text PDFSmall
January 2025
Anhui Provincial Key Laboratory of Advanced Catalysis and Energy Materials, Anhui Ultra High Molecular Weight Polyethylene Fiber Engineering Research Center, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246133, P. R. China.
The catalytic conversion of CO into valuable chemicals using metalized covalent organic frameworks (COFs) as catalysts is a promising method for reducing atmospheric CO levels. Herein, a aldehyde-amine COF (TAPT-Tp) at room temperature and pressure and their metallized results is synthesized, Ni-TAPT-Tp and Ti-TAPT-Tp. The photocatalytic results indicate that the CO to CO reduction rate is 6182.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand.
Dinuclear aluminum complexes bearing a constrained 'indanimine' ligand based on a short hydrazine bridge were synthesized. Single-crystal X-ray crystallography reveals bimetallic penta-coordinated aluminum centers having a distorted trigonal bipyramidal geometry. A short Al-Al distance of 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!