The deubiquitinating enzyme MoUbp8 is required for infection-related development, pathogenicity, and carbon catabolite repression in Magnaporthe oryzae.

Appl Microbiol Biotechnol

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.

Published: June 2020

Deubiquitination is an essential regulatory step in the Ub-dependent pathway. Deubiquitinating enzymes (DUBs) mediate the removal of ubiquitin moieties from substrate proteins, which are involved in many regulatory mechanisms. As a component of the DUB module (Ubp8/Sgf11/Sus1/Sgf73) in the SAGA (Spt-Ada-Gcn5-acetyltransferase) complex, Ubp8 plays a crucial role in both Saccharomyces cerevisiae and humans. In S. cerevisiae, Ubp8-mediated deubiquitination regulates transcriptional activation processes. To investigate the contributions of Ubp8 to physiological and pathological development of filamentous fungi, we generated the deletion mutant of ortholog MoUBP8 (MGG-03527) in Magnaporthe oryzae (syn. Pyricularia oryzae). The ΔMoubp8 strain showed reduced sporulation, pathogenicity, and resistance to distinct stresses. Even though the conidia of the ΔMoubp8 mutant were delayed in appressorium formation, the normal and abnormal (none-septum or one-septum) conidia could finally form appressoria. Reduced melanin in the ΔMoubp8 mutant is highly responsible for the attenuated pathogenicity since the appressoria of the ΔMoubp8 mutant was much more fragile than those of the wild type, due to the defective turgidity. The weakened ability to detoxify or scavenge host-derived reactive oxygen species (ROS) further restricted the invasion of the pathogen. We also showed that carbon derepression, on the one hand, rendered the ΔMoubp8 strain highly sensitive to allyl alcohol, on the other hand, it enhances the resistance of the MoUBP8 defective strain to deoxyglucose. Overall, we suggest that MoUbp8 is not only required for sporulation, melanin formation, appressoria development, and pathogenicity but also involved in carbon catabolite repression of M. oryzae.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-020-10572-5DOI Listing

Publication Analysis

Top Keywords

Δmoubp8 mutant
12
moubp8 required
8
development pathogenicity
8
carbon catabolite
8
catabolite repression
8
magnaporthe oryzae
8
Δmoubp8 strain
8
Δmoubp8
5
deubiquitinating enzyme
4
moubp8
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!