AI Article Synopsis

Article Abstract

Purpose: Nuclear factor (erythroid-derived 2)-like 2, also known as NFE2L2 or NRF2, a transcription factor capable of upregulating antioxidant response element (ARE)-mediated expression and cytoprotective proteins, plays critical roles in chemoprevention, inflammation and aging. NRF2 has recently been proposed as a novel target for cancer chemoprevention. The fungicide miconazole has shown promising antiproliferative effects in cancer cells.

Materials And Methods: After miconazole treatment, the p62-KEAP1-NRF2 activation was analyzed by qPCR and Western blot. The nuclear translocation indicating NRF2 activation was further confirmed by immunofluorescence. Finally, the ROS production was detected by CM-H2DCFDA staining.

Results: We demonstrate in this study that miconazole dramatically increases NRF2 activation in bladder cancer cells, in a dose- and time-dependent manner. Interestingly, levels of expression of p62, a noncanonical pathway that mediates NRF2 activation, appeared to increase in accordance with NRF2. We also investigated levels of the negative regulator kelch-like ECH-associated protein 1 (KEAP1), which is involved in NRF2 activation. As expected, a decrease in KEAP1 expression was found after miconazole exposure. Confirmation of NRF2 nuclear translocation was monitored by immunofluorescence. Miconazole-induced generation of reactive oxygen species (ROS) promoted NRF2 activation. Pretreatment of bladder cancer cells with ROS scavengers abolished NRF2 expression and nuclear translocation, indicating that miconazole activates the noncanonical p62-KEAP1-NRF2 pathway, which is regulated by ROS production.

Conclusion: Our study elucidates the mechanisms through which miconazole stimulates NRF2 which may contribute to cancer chemopreventive effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102888PMC
http://dx.doi.org/10.2147/DDDT.S227892DOI Listing

Publication Analysis

Top Keywords

nrf2 activation
24
nrf2
12
bladder cancer
12
cancer cells
12
nuclear translocation
12
translocation indicating
8
miconazole
7
activation
7
cancer
6
miconazole contributes
4

Similar Publications

The traditional use of plants of the Cinnamomum genus dates back to traditional Eastern medicine for millennia and they have also been used in Western integrative medicine practices, especially for their anti-inflammatory activity. In the context of chemical diversity, the absolute majority of species in this genus have cinnamaldehyde as the majority component, which in turn holds the title of the active ingredient, whose biological effect profile has already been demonstrated in numerous experiments in acute and chronic inflammatory conditions. In this context, the objective of this research was to investigate how cinnamaldehyde can influence inflammatory phenomena.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD), now recognized as metabolic dysfunction-associated steatotic liver disease (MASLD), represents a significant and escalating global health challenge. Its prevalence is intricately linked to obesity, insulin resistance, and other components of the metabolic syndrome. As our comprehension of MASLD deepens, it has become evident that this condition extends beyond the liver, embodying a complex, multi-systemic disease with hepatic manifestations that mirror the broader metabolic landscape.

View Article and Find Full Text PDF

Repurposing the familiar: Future treatment options against chronic kidney disease.

J Pharm Pharmacol

January 2025

Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, 333031, Rajasthan, India.

Objectives: Chronic kidney disease (CKD) is a serious health issue with rising morbidity and mortality rates. Despite advances in understanding its pathophysiology, effective therapeutic options are limited, necessitating innovative treatment approaches. Also, current frontline treatments that are available against CKD are not uniformly effective and often come with significant side effects.

View Article and Find Full Text PDF

Neurodegenerative diseases (NDs) are caused by progressive neuronal death and cognitive decline. Epigallocatechin 3-gallate (EGCG) is a polyphenolic molecule in green tea as a neuroprotective agent. This review evaluates the therapeutic effects of EGCG and explores the molecular mechanisms that show its neuroprotective properties.

View Article and Find Full Text PDF

Redox imbalance, including excessive production of reactive oxygen species (ROS) caused by mitochondrial dysfunction and insufficient endogenous antioxidant capacity, is the primary cause of myocardial ischemia‒reperfusion (I/R) injury. In the exploration of reducing myocardial I/R injury, it is found that protecting myocardial mitochondrial function after reperfusion not only reduces ROS bursts but also inhibits cell apoptosis triggered by the release of cytochrome c. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2) is considered a potential therapeutic target for treating myocardial I/R injury by enhancing the cellular antioxidant capacity through the induction of endogenous antioxidant enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!