This research was developed to investigate whether inoculation with Azospirillum brasilense in combination with silicon (Si) can enhance N use efficiency (NUE) in wheat and to evaluate and correlate nutritional and productive components and wheat grain yield. The study was carried out on a Rhodic Hapludox under a no-till system with a completely randomized block design with four replications in a 2 × 2 × 5 factorial scheme: two liming sources (with Ca and Mg silicate as the Si source and limestone); two inoculations (control - without inoculation and seed inoculation with A. brasilense) and five side-dress N rates (0, 50, 100, 150 and 200 kg ha). The results of this study showed positive improvements in wheat growth production parameters, NUE and grain yield as a function of inoculation associated with N rates. Inoculation can complement and optimize N fertilization, even with high N application rates. The potential benefits of Si use were less evident; however, the use of Si can favour N absorption, even when associated with A. brasilense. Therefore, studies conducted under tropical conditions with Ca and Mg silicate are necessary to better understand the role of Si applied alone or in combination with growth-promoting bacteria such as A. brasilense.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145820PMC
http://dx.doi.org/10.1038/s41598-020-63095-4DOI Listing

Publication Analysis

Top Keywords

inoculation azospirillum
8
azospirillum brasilense
8
grain yield
8
inoculation
6
brasilense
5
brasilense associated
4
associated silicon
4
silicon liming
4
liming source
4
source improve
4

Similar Publications

L. is an aromatic spice, utilized as an original and peculiar flavoring ingredient in a variety of culinary applications and pharmaceuticals. Black seed ( L.

View Article and Find Full Text PDF

The challenge of increasing food production while maintaining environmental sustainability can be addressed by using biofertilizers such as Azospirillum, which can enhance plant growth and colonize more than 100 plant species. The success of this biotechnology depends on the amount of plant growth-promoting bacteria associated with the plant during crop development. However, monitoring bacterial population dynamics after inoculation requires time-consuming, laborious, and costly procedures.

View Article and Find Full Text PDF

Maize drought protection by Azospirillum argentinense Az19 requires bacterial trehalose accumulation.

Appl Microbiol Biotechnol

December 2024

Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.

Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system.

View Article and Find Full Text PDF

The success of biological nitrogen fixation (BNF) in soybean depends on two crucial factors, viz., seed inoculation and soil nutritional balance. The macronutrient sulfur (S) is vital to the formation of ferredoxin, a common source of electrons that controls the proper functioning of the subunits of the enzyme nitrogenase, responsible for the conversion of atmospheric nitrogen (N) to ammonia (NH).

View Article and Find Full Text PDF

Microbes such as bacteria and fungi play important roles in nutrient cycling in soils, often leading to the bioavailability of metabolically important mineral elements such as nitrogen (N), phosphorus (P), iron (Fe), and zinc (Zn). Examples of microbes with beneficial traits for plant growth promotion include mycorrhizal fungi, associative diazotrophs, and the N-fixing rhizobia belonging to the α, β and γ class of Proteobacteria. Mycorrhizal fungi generally contribute to increasing the surface area of soil-root interface for optimum nutrient uptake by plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!