Alzheimer's disease (AD) is a chronic neurodegenerative disease with significant financial costs and negative impacts on quality of life. Psychotic symptoms, i.e., the presence of delusions and/or hallucinations, is a frequent complication of AD. About 50% of AD patients will develop psychotic symptoms (AD with Psychosis, or AD + P) and these patients will experience an even more rapid cognitive decline than AD patients without psychosis (AD-P). In a previous analysis on medication records of 776 AD patients, we had shown that use of Vitamin D was associated with delayed time to psychosis in AD patients and Vitamin D was used more by AD-P than AD + P patients. To explore the potential molecular mechanism behind our findings, we applied systems pharmacology approaches to investigate the crosstalk between AD and psychosis. Specifically, we built protein-protein interaction (PPI) networks with proteins encoded by AD- and psychosis-related genes and Vitamin D-perturbed genes. Using network analysis we identified several high-impact genes, including NOTCH4, COMT, CACNA1C and DRD3 which are related to calcium homeostasis. The new findings highlight the key role of calcium-related signaling pathways in AD + P development and may provide a new direction and facilitate hypothesis generation for future drug development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145835 | PMC |
http://dx.doi.org/10.1038/s41598-020-63021-8 | DOI Listing |
Alzheimers Dement
January 2025
Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA.
Introduction: Alzheimer's disease (AD) in Down syndrome (DS) is associated with changes in brain structure. It is unknown if thickness and volumetric changes can identify AD stages and if they are similar to other genetic forms of AD.
Methods: Magnetic resonance imaging scans were collected for 178 DS adults (106 nonclinical, 45 preclinical, and 27 symptomatic).
Alzheimers Dement
January 2025
UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK.
Introduction: Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear.
View Article and Find Full Text PDFJ Taibah Univ Med Sci
December 2024
Universitas Nasional, Department of Biology, South Jakarta, Indonesia.
Objectives: Dementia, a growing concern globally, affects more than 55 million people-a number projected to rise to 152 million by 2050. Current medications target Alzheimer's disease, the most prevalent form of dementia. This study investigated L.
View Article and Find Full Text PDFFront Psychol
December 2024
Digital Cognitive Dx, Philips, Eindhoven, Netherlands.
We evaluated a digital cognitive assessment platform, Philips IntelliSpace Cognition, in a case-control study of patients diagnosed with mild cognitive impairment (MCI) and cognitively normal (CN) older adults. Performance on individual neuropsychological tests, cognitive -scores, and Alzheimer's disease (AD)-specific composite scores was compared between the CN and MCI groups. These groups were matched for age, sex, and education.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
The neurovascular unit (NVU) is highly responsible for cerebral homeostasis and its dysfunction emerges as a critical contributor to Alzheimer's disease (AD) pathology. Hence, rescuing NVU dysfunction might be a viable approach to AD treatments. Here, we fabricated a self-regulated muti-functional nano-modulator (siR/PIO@RP) that can intelligently navigate to damaged blood-brain barrier and release therapeutical cargoes for synergetic AD therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!