Plant hormones have various functions in plants and play crucial roles in all developmental and differentiation stages. Auxins constitute one of the most important groups with the major representative indole-3-acetic acid (IAA). A halogenated derivate of IAA, 4-chloro-indole-3-acetic acid (4-Cl-IAA), has previously been identified in and other legumes. While the enzymes responsible for the halogenation of compounds in bacteria and fungi are well studied, the metabolic pathways leading to the production of 4-Cl-IAA in plants, especially the halogenating reaction, are still unknown. Therefore, bacterial flavin-dependent tryptophan-halogenase genes were transformed into the model organism . The type of chlorinated indole derivatives that could be expected was determined by incubating wild type with different Cl-tryptophan derivatives. We showed that, in addition to chlorinated IAA, chlorinated IAA conjugates were synthesized. Concomitantly, we found that an auxin conjugate synthetase (GH3.3 protein) from was able to convert chlorinated IAAs to amino acid conjugates in vitro. In addition, we showed that the production of halogenated tryptophan (Trp), indole-3-acetonitrile (IAN) and IAA is possible in transgenic in planta with the help of the bacterial halogenating enzymes. Furthermore, it was investigated if there is an effect (i) of exogenously applied Cl-IAA and Cl-Trp and (ii) of endogenously chlorinated substances on the growth phenotype of the plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177246PMC
http://dx.doi.org/10.3390/ijms21072567DOI Listing

Publication Analysis

Top Keywords

chlorinated iaa
8
chlorinated
6
iaa
5
chlorinated auxins-how
4
auxins-how deal
4
deal them?
4
them? plant
4
plant hormones
4
hormones functions
4
functions plants
4

Similar Publications

In light of the undeniable and alarming fact that human fertility is declining, the harmful factors affecting reproductive health are garnering more and more attention. Iodoacetic acid (IAA), an emerging unregulated drinking water disinfection byproduct, derives from chlorine disinfection and is frequently detected in the environment and biological samples. Humans are ubiquitously exposed to IAA daily mainly through drinking water, consuming food and beverages made from disinfected water, contacting swimming pools and bath water, etc.

View Article and Find Full Text PDF

Objective: To clarify the effect of iodoacetic acid(IAA) on the blood system and electrolyte balance, hence further study the intrinsic relation of blood routine parameters and electrolyte levels, major hematological toxicity effects and their pattern after IAA treatment.

Methods: Forty-eight 21-day-old male SPF grade Sprague-Dawley(SD) rats were gavaged with 0, 6.25, 12.

View Article and Find Full Text PDF

Chlorination of water results in the formation of haloacetic acids (HAAs) as major disinfection byproducts (DBPs). Previous studies have reported some HAAs species to act as cytotoxic, genotoxic, and carcinogenic. This work aimed at further exploring the toxicity potential of the most investigated HAAs (chloroacetic (CAA), bromoacetic (BAA), iodoacetic (IAA) acid) and HAAs species with high content of bromine (tribromoacetic acid (TBAA)), and iodine in their structures (chloroiodoacetic (CIAA) and diiodoacetic acid (DIAA)) to human cells.

View Article and Find Full Text PDF

Deriving elemental formulas from mass spectra used to be an exclusive feature provided only by expensive high-resolution mass spectrometry instruments. Nowadays this feature can be used on unit resolution quadrupole-based mass spectrometers (MS) combining isotope abundance analysis (IAA) and mass accuracy analysis (MAA) with surprising accuracy that is commonly lower than 1 ppm mass accuracy. In this Article, we assess the usefulness of both MAA and IAA in the elemental formula deriving process performed on unit resolution MS data with constant resolution across the / range.

View Article and Find Full Text PDF

A major quest in Mars' exploration has been the hunt for atmospheric gases, potentially unveiling ongoing activity of geophysical or biological origin. Here, we report the first detection of a halogen gas, HCl, which could, in theory, originate from contemporary volcanic degassing or chlorine released from gas-solid reactions. Our detections made at ~3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!