AI Article Synopsis

  • Understanding the differences in charge generation and recombination between inorganic and organic semiconductors is key to improving organic photoconversion devices like solar cells and photodetectors.
  • This study investigated how doping concentration affects the photoconversion process in a single organic semiconductor at the organic-homojunction interface by measuring temperature-dependent characteristics and energy structures.
  • The findings reveal that despite using a single material and doping method similar to inorganic devices, the charge dynamics in organic semiconductors are governed by localized charges, emphasizing the need to manage charge delocalization for enhancing device efficiency.

Article Abstract

Clarifying critical differences in free charge generation and recombination processes between inorganic and organic semiconductors is important for developing efficient organic photoconversion devices such as solar cells (SCs) and photodetector. In this study, we analyzed the dependence of doping concentration on the photoconversion process at the organic -homojunction interface in a single organic semiconductor using the temperature dependence of characteristics and energy structure measurements. Even though the organic -homojunction SC devices were fabricated using a single host material and the doping technique resembling an inorganic -homojunction, the charge generation and recombination mechanisms are similar to that of conventional donor/acceptor (D/A) type organic SCs; that is, the charge separation happens from localized exciton and charge transfer (CT) state being separated by the energy offset between adjacent molecules, and the recombination happens from localized charge carrier at two adjacent molecules. The determining factor for photoconversion processes is the localized nature of charges in organic semiconductors. The results demonstrated that controlling the delocalization of the charges is important to realize efficient organic photoconversion devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178707PMC
http://dx.doi.org/10.3390/ma13071727DOI Listing

Publication Analysis

Top Keywords

organic
9
-homojunction interface
8
interface single
8
single organic
8
organic semiconductor
8
charge generation
8
generation recombination
8
organic semiconductors
8
efficient organic
8
organic photoconversion
8

Similar Publications

Concomitant formation of protocells and prebiotic compounds under a plausible early Earth atmosphere.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Crystallographic Studies, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científica, Armilla 18100, Spain.

Revealing the origin of life and unambiguously detecting fossil remains of the earliest organisms are closely related aspects of the same scientific research. The synthesis of prebiotic molecular building blocks of life and the first compartmentalization into protocells have been considered two events apart in time, space, or both. We conducted lightning experiments in borosilicate reactors filled with a mixture of gases mimicking plausible geochemical conditions of early Earth.

View Article and Find Full Text PDF

Monoanionic, bidentate-auxiliary-directed, cobalt-catalyzed C-H bond functionalization has become a very useful tool in organic synthesis. A comprehensive investigation into isolated organometallic intermediates and their reactivity within the catalytic cycle is lacking. We report here mechanistic studies of cobalt-catalyzed, aminoquinoline-directed C(sp)-H bond functionalization.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising treatment options, showcasing immense potential in addressing both oncologic and nononcologic diseases. Single-component organic phototherapeutic agents (SCOPAs) offer advantages compared to inorganic or multicomponent nanomedicine, including better biosafety, lower toxicity, simpler synthesis, and enhanced reproducibility. Nonetheless, how to further improve the therapeutic effectiveness of SCOPAs remains a challenging research area.

View Article and Find Full Text PDF

Deciphering the Energy Transfer Mechanism Across Metal Halide Perovskite-Phthalocyanine Interfaces.

Adv Sci (Weinh)

January 2025

Institute of Molecular Science, University of Valencia, c/Catedrático José Beltrán Martínez 2, Paterna, 46980, Valencia, Spain.

Energy transfer processes in nanohybrids are at the focal point of conceptualizing, designing, and realizing novel energy-harvesting systems featuring nanocrystals that absorb photons and transfer their energy unidirectionally to surface-immobilized functional dyes. Importantly, the functionality of these dyes defines the ultimate application. Herein, CsPbBr perovskite nanocrystals (NCs) are interfaced with zinc phthalocyanine (ZnPc) dyes featuring carboxylic acid.

View Article and Find Full Text PDF

is a Gram-positive bacterium that is responsible for severe nosocomial infections. The rise of multidrug-resistant strains, which can pose significant health threats, prompts the development of new treatment interventions, and much attention has been directed at the development of prophylactic and therapeutic vaccination strategies. Capsular polysaccharides (CPs) are key protective elements of the cell wall and have been proposed as promising candidate antigens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!