Plasma gelsolin (pGSN) is a highly conserved abundant circulating protein, characterized by diverse immunomodulatory activities including macrophage activation and the ability to neutralize pro-inflammatory molecules produced by the host and pathogen. Using a murine model of Gram-negative sepsis initiated by the peritoneal instillation of Xen 5, we observed a decrease in the tissue uptake of IRDye800CW 2-deoxyglucose, an indicator of inflammation, and a decrease in bacterial growth from ascitic fluid in mice treated with intravenous recombinant human plasma gelsolin (pGSN) compared to the control vehicle. Pretreatment of the murine macrophage line RAW264.7 with pGSN, followed by addition of Xen 5, resulted in a dose-dependent increase in the proportion of macrophages with internalized bacteria. This increased uptake was less pronounced when cells were pretreated with pGSN and then centrifuged to remove unbound pGSN before addition of bacteria to macrophages. These observations suggest that recombinant plasma gelsolin can modulate the inflammatory response while at the same time augmenting host antibacterial activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177774PMC
http://dx.doi.org/10.3390/ijms21072551DOI Listing

Publication Analysis

Top Keywords

plasma gelsolin
16
recombinant human
8
human plasma
8
gelsolin pgsn
8
pgsn addition
8
pgsn
5
plasma
4
gelsolin
4
gelsolin stimulates
4
stimulates phagocytosis
4

Similar Publications

The connection between the F-actin and ribosome docking to the PM has been reported, but the exact mechanism has remained unclear. Previously, we discovered that gelsolin (GSN) forms complexes with numerous ribosomal proteins, including ribosomal protein SA (RPSA). Now, we have unraveled the mechanism of ribosome recruitment to the lipid nanodomains of the PM, with GSN playing a pivotal role in this process.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to assess how human subjects react to elevated pressures of helium and nitrogen, focusing on inflammatory and oxidative stress responses.
  • Both gases activated neutrophils and led to slight increases in inflammatory markers and urinary IL-6, alongside a decrease in plasma gelsolin, indicating an inflammatory response.
  • The results suggest that typical diving gas exposure can trigger inflammation, which might contribute to decompression sickness, while the mixed oxidative stress responses imply complex interactions within the body's systems.
View Article and Find Full Text PDF
Article Synopsis
  • Research examines how tunnel workers experience high pressure exposure compared to SCUBA divers, focusing on inflammation linked to decompression sickness (DCS).
  • Despite longer high-pressure exposure in tunnel workers (4.1-4.9 hours) versus shorter exposure for divers (0.61 hours), blood analysis showed similar increases in blood microparticles and interleukin levels for both groups.
  • Neutrophil counts and activation were significantly higher in tunnel workers, indicating that while microparticle levels stabilize quickly, neutrophil activation requires more time under high pressure conditions.
View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the role of plasma gelsolin (pGSN), a protein that breaks down actin filaments, in inflammatory and neurodegenerative diseases, particularly in a mouse model of decompression sickness (DCS).
  • - Mice exposed to high pressure showed a significant decrease in pGSN levels and increased inflammatory microparticles (MPs), which led to neuroinflammation and cognitive/motor function impairments lasting over 12 days.
  • - Administering recombinant human plasma gelsolin (rhu-pGSN) effectively reduced inflammation, restored synaptic protein levels, and improved neurological function, suggesting that rhu-pGSN could be a potential treatment for DCS.
View Article and Find Full Text PDF

Milk Fat Globules: 2024 Updates.

Newborn (Clarksville)

March 2024

Global Newborn Society, Clarksville Maryland, United States of America.

Article Synopsis
  • * MFGs feature a unique structure with a lipid core and a membrane rich in bioactive components that aid in energy release and support immune health in developing gastrointestinal tracts.
  • * Research suggests MFGs can be enhanced to address specific nutritional deficiencies while also having potential therapeutic benefits for neurodevelopment and defense against infections.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!