Intestinal microbiota dysbiosis play a role in pathogenesis of patients with primary immune thrombocytopenia.

Thromb Res

Department of Hematology, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai 201700, China; Institute of Clinical Science, Zhongshan Hospital Fudan University, Shanghai 200032, China; Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China. Electronic address:

Published: June 2020

Background: The intestinal microbiota is essential for the maintenance of the physiology of immune homeostasis. Dysbiosis has been described in some autoimmune diseases, however its role is still elusive in primary immune thrombocytopenia (ITP), which is one kind of autoimmune diseases. This study aimed to characterize the phylogenetic diversity of the fecal microbiota and its relationship with the platelet activation status in patients with ITP.

Methods: The platelet activation status was assessed by 2 platelet markers, PAC-1 (antibody that recognizes the activated GPIIb/IIIa complex) and CD62p (Platelet surface P-selectin) by flow cytometry. Total DNA was extracted from fecal samples of ITP patients and healthy controls (HC). Sequencing the V4 hypervariable region of bacterial 16S rRNA genes was used to identify the changes in phylogenetic diversity and composition of the intestinal flora. The obtained sequencing reads were assigned to operational taxonomic units (OTUs, 97% sequence identity) and taxonomically classified to assess composition and diversity.

Results: The percentage of PAC-1+ platelets in ITP patients was higher than that in control group (p < 0.001), The percentage of CD62p+ and PAC-1+CD62p+ platelets in ITP patients both higher than those in control group (p < 0.001). At the phylum level, eight different phyla were identified in ITP individuals, with a majority of Bacteroidetes (45.96%) and Firmicutes (38.59%), followed by Proteobacteria (11.43%), Fusobacteria(1.29%), and Actinobacteria (1.22%). While in the Healthy volunteers, ten phyla were detected, with a predominance of Firmicutes (50.92%) and Bacteroidetes (34.26%), came before Proteobacteria (13.60%), and Actinobacteria (0.90%). The gut microbiota was skewed in ITP, with an increased proportion of Proteobacteria, Bacteroidetes and Bacteroidetes/Firmicutes ratio, a decreased proportion of Firmicutes compared with HC. Disease specific alterations in diversity was also identified, especially the potential markers (Anaerorhabdus, sutterella, Peptostreptococcaceae, Clostridium_XI and carnobacteriaceae, p < 0.05) for ITP.

Conclusions: The results suggested that the distinct microbiota dysbiosis in ITP characterized by alterations in biodiversity and composition, which could provide insights for diet therapy and fecal microbiota transplantation treatment to cure ITP. There might be somehow compensatory enhancement of platelet activation in ITP patients. And there is associate between platelet activation and intestinal microbiota in patients with ITP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.thromres.2020.03.012DOI Listing

Publication Analysis

Top Keywords

intestinal microbiota
8
primary immune
8
immune thrombocytopenia
8
autoimmune diseases
8
phylogenetic diversity
8
platelet activation
8
activation status
8
itp patients
8
microbiota dysbiosis
4
dysbiosis play
4

Similar Publications

Superior persistence of ustekinumab compared to anti-TNF in vedolizumab-experienced inflammatory bowel diseases patients: a real-world cohort study.

BMC Gastroenterol

December 2024

Department of Gastroenterology and Hepatology, Linkou Branch, Chang Gung Memorial Hospital, 5, Fu-Hsin Street, Guei-Shan District, Taoyuan, 33305, Taiwan.

Background/aims: The increasing use of biologic therapies for moderate to severe inflammatory bowel disease (IBD) highlights the importance of optimal treatment sequencing, particularly after vedolizumab (VDZ) exposure. Studies comparing the effectiveness of ustekinumab (UST) and antitumor necrosis factor (anti-TNF) agents post-VDZ are limited.

Methods: This retrospective study analyzed VDZ-experienced IBD patients treated with UST or anti-TNF (adalimumab and infliximab) from May 2019 to January 2024.

View Article and Find Full Text PDF

NRP1 instructs IL-17-producing ILC3s to drive colitis progression.

Cell Mol Immunol

January 2025

Department of oncology, The Second Hospital of Tianjin Medical University; Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases; Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.

Group 3 innate lymphoid cells (ILC3s) control tissue homeostasis and orchestrate mucosal inflammation; however, the precise mechanisms governing ILC3 activity are fully understood. Here, we identified the transmembrane protein neuropilin-1 (NRP1) as a positive regulator of interleukin (IL)-17-producing ILC3s in the intestine. NRP1 was markedly upregulated in intestinal mucosal biopsies from patients with inflammatory bowel disease (IBD) compared with healthy controls.

View Article and Find Full Text PDF

Fetal growth restriction (FGR) is a common complication of pregnancy, which seriously endangers fetal health and still lacks effective therapeutic targets. Clostridium difficile (C. difficile) is associated with fetal birth weight, and its membrane vesicles (MVs) are pathogenic vectors.

View Article and Find Full Text PDF

Microbiome and Mucosal Immunity in the Intestinal Tract.

In Vivo

December 2024

Department of Gynecology and Gynecological Oncology, Research Laboratories, University Hospital Bonn, Bonn, Germany

The human bowel is exposed to numerous biotic and abiotic external noxious agents. Accordingly, the digestive tract is frequently involved in malfunctions within the organism. Together with the commensal intestinal flora, it regulates the immunological balance between inflammatory defense processes and immune tolerance.

View Article and Find Full Text PDF

Objective: To characterize early physiologic stresses imposed by surgery by applying metabolomic analyses to deeply phenotype pre- and postoperative plasma and urine of patients undergoing elective surgical procedures.

Background: Patients experience perioperative stress through depletion of metabolic fuels. Bowel stasis or injury might allow more microbiome-derived uremic toxins to enter the blood, while the liver and kidney are simultaneously clearing analgesic and anesthetic drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!