Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Epicardial pacing increases risk of ventricular tachycardia (VT) in patients with ischemic cardiomyopathy (ICM) when pacing in proximity to scar. Endocardial pacing may be less arrhythmogenic as it preserves the physiological sequences of activation and repolarization.
Objective: The purpose of this study was to determine the relative arrhythmogenic risk of endocardial compared to epicardial pacing, and the role of the transmural gradient of action potential duration (APD) and pacing location relative to scar on arrhythmogenic risk during endocardial pacing.
Methods: Computational models of ICM patients (n = 24) were used to simulate left ventricular (LV) epicardial and endocardial pacing 0.2-3.5 cm from a scar. Mechanisms were investigated in idealized models of the ventricular wall and scar. Simulations were run with/without a 20-ms transmural APD gradient in the physiological direction and with the gradient inverted. Dispersion of repolarization was computed as a surrogate of VT risk.
Results: Patient-specific models with a physiological APD gradient predict that endocardial pacing decreases VT risk (34%; P <.05) compared to epicardial pacing when pacing in proximity to scar (0.2 cm). Endocardial pacing location does not significantly affect VT risk, but epicardial pacing at 0.2 cm compared to 3.5 cm from scar increases it (P <.05). Inverting the transmural APD gradient reverses this trend. Idealized models predict that propagation in the direction opposite to APD gradient decreases VT risk.
Conclusion: Endocardial pacing is less arrhythmogenic than epicardial pacing when pacing proximal to scar and is less susceptible to pacing location relative to scar. The physiological repolarization sequence during endocardial pacing mechanistically explains reduced VT risk compared to epicardial pacing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397521 | PMC |
http://dx.doi.org/10.1016/j.hrthm.2020.03.021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!