Tanneries pose a serious threat to the environment by generating large amount of solid tannery waste (STW). Two metagenomes representing tannery waste dumpsites Jajmau (JJK) and Unnao (UNK) were sequenced using Illumina HiSeq platform. Microbial diversity analysis revealed domination of Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Planctomycetes in both metagenomes. Presence of pollutant degrading microbes such as Bacillus, Clostridium, Halanaerobium and Pseudomonas strongly indicated their bioremediation ability. KEGG and SEED annotated main functional categories included carbohydrate metabolism, amino acids metabolism, and protein metabolism. KEGG displayed 5848 and 9633 proteases encoding ORFs compared to 5159 and 8044 ORFs displayed by SEED classification in JJK and UNK metagenomes, respectively. Abundantly present serine- and metallo-proteases belonging to Bacillaceae, Clostridiaceae, Xanthomonadaceae, Flavobacteriaceae and Chitinophagaceae families exhibited proteinaceous waste degrading ability of these metagenomes. Further structural and functional analysis of metagenome encoded enzymes may facilitate the discovery of novel proteases useful in bioremediation of STW.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2020.04.002DOI Listing

Publication Analysis

Top Keywords

tannery waste
12
microbial diversity
8
solid tannery
8
metagenomes
5
ngs-based characterization
4
characterization microbial
4
diversity functional
4
functional profiling
4
profiling solid
4
waste
4

Similar Publications

Identification and Characterization of a Protease Producing Strain From Tannery Waste for Efficient Dehairing of Goat Skin.

Biomed Res Int

January 2025

Center for Personalized Nanomedicine, Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia.

Environmental pollution has been a significant concern for the last few years. The leather industry significantly contributes to the economy but is one of Bangladesh's most prominent polluting industries. It is also responsible for several severe diseases such as cancer, lung diseases, and heart diseases of leather workers because they use bleaching agents and chemicals, and these have numerous adverse effects on human health.

View Article and Find Full Text PDF

A sustainable biosorbent, silver nanoparticles-decorated coffee-ground waste (CWAg), was synthesized through a simple in-situ reduction method. CWAg is extensively characterized via SEM-EDX, PZC, FTIR, XRD, HR-TEM, and XPS analyses. The biosorbent was tested to remove chromium (Cr(VI)) and methylene blue (MB) from wastewater, and its antibacterial properties was evaluated.

View Article and Find Full Text PDF

Application of zeolites for efficient tannery wastewater remediation.

Environ Sci Pollut Res Int

January 2025

Stazione Sperimentale Per L'industria Delle Pelli E Delle Materie Concianti S.R.L., 80143, Napoli, Italy.

Leather manufacturing is the process of converting raw animal hides or skins into finished leather. The complex industrial procedures result in a tanning effluent composed of chemical compounds with potentially hazardous impacts on humans and ecosystems. Among the traditional and efficient wastewater treatments, adsorption is an effective and well-known approach, able to manage a wide range of contaminants from wastewater.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the environmental challenges posed by tannery wastewater, particularly high total dissolved solids (TDS) and contaminants, and introduces a new composite membrane made from polyvinyl alcohol (PVA) and polyvinyl chloride (PVC) designed for effective TDS removal.
  • The membrane, created using a solution casting technique with a crosslinking agent for improved stability, showed a remarkable TDS removal efficiency of 91.73% under optimal conditions, along with significant reductions in turbidity and other harmful pollutants.
  • With strong mechanical properties and partial biodegradability, the PVA-PVC membrane is positioned as a promising, cost-effective solution for sustainable wastewater treatment in the leather industry.
View Article and Find Full Text PDF

Human health risk assessment from potentially toxic elements in the soils of Sudan: A meta-analysis.

Sci Total Environ

January 2025

Department of Physical Geography, University of Göttingen, 37077 Göttingen, Germany. Electronic address:

Potentially toxic elements (PTEs) in soils threaten human health through several exposure pathways. However, health risks posed by PTEs in soils in developing countries have not yet been comprehensively investigated. Thus, such countries lack important information that is needed to implement sustainable solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!