Background: Buttermilk contains a mixture of choline forms; it is high in phosphatidylcholine (PC) and sphingomyelin (SM), which could have an impact on immune system development and function.
Objectives: We aimed to determine the effect of feeding buttermilk-derived choline forms during pregnancy and lactation on maternal immune function.
Methods: Sprague Dawley dams (n = 8 per diet) were randomly assigned midway through pregnancy (10 d of gestation) to 1 of 3 experimental diets, containing 1.7 g/kg choline: control [100% free choline (FC)]; buttermilk [37% PC, 34% SM, 17% glycerophosphocholine (GPC), 7% FC, 5% phosphocholine]; or placebo (50% PC, 25% FC, 25% GPC). Dams consumed the same diet until the end of the lactation period (21 d after parturition). Cell phenotypes and cytokine production by mitogen-stimulated splenocytes were measured and compared using 1-factor ANOVA test in order to asses the effect of diet on immune fuction of lactating dams (main outcome).
Results: After ConA stimulation, splenocytes from dams in the buttermilk group produced more IL-2 (30%), TNF-α (30%), and IFN-γ (42%) compared with both the placebo and control diets. Placebo-fed dams had a higher proportion of CD8+ cells expressing CD152+ (22%) in spleen, and splenocytes from dams that were fed the buttermilk and the placebo diets produced about 50% and 53% more IL-10 after LPS and OVA stimulation, respectively, compared with the control group.
Conclusions: Feeding buttermilk-derived choline forms during pregnancy and lactation had a beneficial impact on the immune system of Sprague Dawley rat dams, especially on T-cell function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jn/nxaa089 | DOI Listing |
Eur J Med Chem
January 2025
Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China. Electronic address:
Intravenously administered nanoparticles (NPs) often bind with plasma proteins, forming the protein corona that promotes rapid systemic clearance, a primary challenge in nanomedicine. In this study, we developed a pH- and GSH-sensitive "stealth" nanodelivery system, PTX@NPs-aPD1-IL, for sequential drug release. By using a biocompatible choline-based ionic liquid (IL) as the coating for NPs, the interaction and adsorption of NPs with serum proteins were reduced, achieving targeted delivery to the lung organ and increasing drug accumulation.
View Article and Find Full Text PDFMolecules
December 2024
Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland.
Single and dual-drug delivery systems (DDSs) based on linear choline polymers were designed through the controlled polymerization of a pharmaceutically functionalized monomer, i.e., [2-(methacryloyloxy)ethyl]trimethylammonium, with counterions of cloxacillin (TMAMA/CLX), or its copolymerization with [2-(methacryloyloxy)ethyl]trimethylammonium with ampicillin (TMAMA/AMP), providing antibiotic properties.
View Article and Find Full Text PDFTalanta
December 2024
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, People's Republic of China. Electronic address:
In this study, tetrabutylammonium chloride (TBAC), tetrabutylammonium bromide (TBAB), and choline chloride (ChCl) were innovatively applied in the liquid-liquid microextraction (LLME) of bisphenol A (BPA) from edible oil by forming water-based deep eutectic solvent (WDES). The presence of water is not only used in the synthesis of WDES, but also modulates the viscosity of DES and improve its diffusion and mass transfer properties. Several crucial parameters affecting the extraction efficiency were examined, including the type and amount of WDES and the extraction time.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Shosha, Himeji, Hyogo 671-2201, Japan.
To prepare amphiphilic diblock copolymers (MP), a controlled radical polymerization approach was employed, incorporating hydrophilic poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) with hydrophobic poly(3-methoxypropyl acrylate) (PMPA). The synthesized diblock copolymers feature a PMPC block with a degree of polymerization (DP) of 100 and a PMPA block with DP (=) values of 171 and 552. The hydrophilic PMPC block exhibits biocompatibility, such as inhibition of platelet and protein adsorption, because of its hydrophilic pendant zwitterionic phosphorylcholine groups that have the same chemical structure as cell membrane surfaces.
View Article and Find Full Text PDFInt J Pharm
December 2024
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; Faculty of Health Sciences, University of Macau, Macau 999078, China. Electronic address:
Messenger RNA (mRNA) encapsulated in lipid nanoparticles (LNPs) represents a cutting-edge delivery technology that played a pivotal role during the COVID-19 pandemic and in advancing vaccine development. However, molecular structure of mRNA-LNPs at real size remains poorly understood, with conflicting results from various experimental studies. In this study, we aim to explore the assembly process and structural characteristics of mRNA-LNPs at realistic sizes using coarse-grained molecular dynamic simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!