Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Metarhizium is a group of insect-pathogenic fungi that can produce insecticidal metabolites, such as destruxins. Interestingly, the acridid-specific fungus Metarhizium acridum (MAC) can kill locusts faster than the generalist fungus Metarhizium robertsii (MAA) even without destruxin. However, the underlying mechanisms of different pathogenesis between host-generalist and host-specialist fungi remain unknown. This study compared transcriptomes and metabolite profiles to analyze the difference in responsiveness of locusts to MAA and MAC infections. Results confirmed that the detoxification and tryptamine catabolic pathways were significantly enriched in locusts after MAC infection compared with MAA infection and that high levels of tryptamine could kill locusts. Furthermore, tryptamine was found to be capable of activating the aryl hydrocarbon receptor of locusts (LmAhR) to produce damaging effects by inducing reactive oxygen species production and immune suppression. Therefore, reducing LmAhR expression by RNAi or inhibitor (SR1) attenuates the lethal effects of tryptamine on locusts. In addition, MAA, not MAC, possessed the monoamine oxidase (Mao) genes in tryptamine catabolism. Hence, deleting MrMao-1 could increase the virulence of generalist MAA on locusts and other insects. Therefore, our study provides a rather feasible way to design novel mycoinsecticides by deleting a gene instead of introducing any exogenous gene or domain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7173932 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1008675 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!