This manuscript will review emerging applications of artificial intelligence, specifically deep learning, and its application to glioblastoma multiforme (GBM), the most common primary malignant brain tumor. Current deep learning approaches, commonly convolutional neural networks (CNNs), that take input data from MR images to grade gliomas (high grade from low grade) and predict overall survival will be shown. There will be more in-depth review of recent articles that have applied different CNNs to predict the genetics of glioma on pre-operative MR images, specifically 1p19q codeletion, MGMT promoter, and IDH mutations, which are important criteria for the diagnosis, treatment management, and prognostication of patients with GBM. Finally, there will be a brief mention of current challenges with DL techniques and their application to image analysis in GBM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/RMR.0000000000000237 | DOI Listing |
BioData Min
January 2025
Department of Computer Science, Hanyang University, Seoul, Republic of Korea.
Background: Understanding the molecular properties of chemical compounds is essential for identifying potential candidates or ensuring safety in drug discovery. However, exploring the vast chemical space is time-consuming and costly, necessitating the development of time-efficient and cost-effective computational methods. Recent advances in deep learning approaches have offered deeper insights into molecular structures.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
H3 lysine 4 trimethylation (H3K4me3) modification and related regulators extensively regulate various crucial transcriptional courses in health and disease. However, the regulatory relationship between H3K4me3 modification and anti-tumor immunity has not been fully elucidated. We identified 72 independent prognostic genes of lung adenocarcinoma (LUAD) whose transcriptional expression were closely correlated with known 27 H3K4me3 regulators.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
January 2025
Department of Orthopedics, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, China.
Purpose: Identifying patients who may benefit from multiple drilling are crucial. Hence, the purpose of the study is to utilize radiomics and deep learning for predicting no-collapse survival in patients with femoral head osteonecrosis.
Methods: Patients who underwent multiple drilling were enrolled.
BMC Bioinformatics
January 2025
Auburn University, Auburn, AL, 36849, USA.
Background: Pacific Biosciences (PacBio) circular consensus sequencing (CCS), also known as high fidelity (HiFi) technology, has revolutionized modern genomics by producing long (10 + kb) and highly accurate reads. This is achieved by sequencing circularized DNA molecules multiple times and combining them into a consensus sequence. Currently, the accuracy and quality value estimation provided by HiFi technology are more than sufficient for applications such as genome assembly and germline variant calling.
View Article and Find Full Text PDFBMC Med Res Methodol
January 2025
School of Management, Beijing University of Chinese Medicine, Beijing, China.
Purpose: The process of searching for and selecting clinical evidence for systematic reviews (SRs) or clinical guidelines is essential for researchers in Traditional Chinese medicine (TCM). However, this process is often time-consuming and resource-intensive. In this study, we introduce a novel precision-preferred comprehensive information extraction and selection procedure to enhance both the efficiency and accuracy of evidence selection for TCM practitioners.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!