There is a strong correlation between aging and onset of idiopathic Parkinson's disease, but little is known about whether cellular changes occur during normal aging that may explain this association. Here, proteomic and bioinformatic analysis was conducted on the substantia nigra (SN) of rats at four stages of life to identify and quantify protein changes throughout aging. This analysis revealed that proteins associated with cell adhesion, protein aggregation and oxidation-reduction are dysregulated as early as middle age in rats. Glial fibrillary acidic protein (GFAP) was identified as a network hub connecting the greatest number of proteins altered during aging. Furthermore, the isoform of GFAP expressed in the SN varied throughout life. However, the expression levels of the rate-limiting enzyme for dopamine production, tyrosine hydroxylase (TH), were maintained even in the oldest animals, despite a reduction in the number of dopamine neurons in the SN pars compact(SNc) as aging progressed. This age-related increase in TH expression per neuron would likely to increase the vulnerability of neurons, since increased dopamine production would be an additional source of oxidative stress. This, in turn, would place a high demand on support systems from local astrocytes, which themselves show protein changes that could affect their functionality. Taken together, this study highlights key processes that are altered with age in the rat SN, each of which converges upon GFAP. These findings offer insight into the relationship between aging and increased challenges to neuronal viability, and indicate an important role for glial cells in the aging process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.24622 | DOI Listing |
Neurosciences (Riyadh)
January 2025
From the School of Clinical Medicine (Liang, Luo, Jia), Shandong Second Medical University, Weifang, from the Department of Neurology (Liang, Zhao, Lin, Li, Luo, Jia) , Beijing Shijingshan Hospital, Shijingshan Teaching Hospital of Capital Medical University, Beijing, and from the Department of Neurology (Li), Affiliated Hospital of Weifang Medical University, Weifang, China.
Objectives: To identify a key Long chain non-coding RNAs (lncRNAs) related to PD and provide a new perspective on the role of LncRNAs in Parkinson's disease (PD) pathophysiology.
Methods: Our study involved analyzing gene chips from the substantia nigra and white blood cells, both normal and PD-inclusive, in the Gene Expression Omnibus (GEO) database, utilizing a weighted gene co-expression network analysis (WGCNA). The technique of WGCNA facilitated the examination of differentially expressed genes (DEGs) in the substantia nigra and the white blood cells of individuals with PD.
Int J Mol Sci
December 2024
Department of Anatomy, Dokkyo Medical University School of Medicine, 880 Kita-Kobayashi, Mibu-machi, Shimotsuga-gun 321-0293, Tochigi, Japan.
Recent findings have revealed that melanocortin 1 receptor (MC1R) deficiency leads to Parkinson's disease-like dopaminergic neurodegeneration in the substantia nigra (SN). However, its precise distribution and expressing-cell type in the SN remain unclear. Therefore, in this study, we analyzed the localization and characteristics of MC1R in the SN using histological methods, including in situ hybridization and immunohistochemistry.
View Article and Find Full Text PDFMov Disord
January 2025
Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA.
Background: Perry syndrome (PS) is a rare and fatal hereditary autosomal dominant neurodegenerative disorder caused by mutations in dynactin (DCTN1). PS brains accumulate inclusions positive for ubiquitin, transactive-response DNA-binding protein of 43 kDa (TDP-43), and to a lesser extent dynactin.
Objectives: Little is known regarding the contributions of TDP-43, an RNA binding protein that represses cryptic exon inclusion, in PS.
Neuron
January 2025
Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:
Attention deficit hyperactivity disorder (ADHD), affecting 4% of the population, is characterized by inattention, hyperactivity, and impulsivity; however, its neurophysiological mechanisms remain unclear. Here, we discovered that deficiency of histamine H receptor (HR) in parvalbumin-positive neurons in substantia nigra pars recticulata (PV) attenuates PV neuronal activity and induces hyperactivity, impulsivity, and inattention in mice. Moreover, decreased HR expression was observed in PV in patients with ADHD symptoms and dopamine-transporter-deficient mice, whose behavioral phenotypes were alleviated by HR agonist treatment.
View Article and Find Full Text PDFJ Neurol Sci
January 2025
UniSA Clinical & Health Sciences and Alliance for Research in Exercise, Nutrition and Activity (ARENA), City East Campus, University of South Australia, GPO Box 2471, Adelaide, South Australia 5001, Australia. Electronic address:
The appearance of the substantia nigra (SN) can aid diagnosis of Parkinson's disease (PD). The effect of age and sex on the appearance of nigrosome-1 (SN subregion) on magnetic resonance imaging (MRI), and the relationship between nigrosome-1 (viewed with MRI) and SN echogenicity (viewed with transcranial ultrasound) is unknown. The study aimed to address these knowledge gaps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!