Unravelling electron transfer in peptide-cation complexes: a model for mimicking redox centres in proteins.

Phys Chem Chem Phys

ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia.

Published: April 2020

Metalloproteins are crucial to many biological processes, such as photosynthesis, respiration, and efficient electron transport. Zinc is the most common transition metal found in proteins and is critical for structure, function and stability, however the effects from the electronic properties of a bound zinc ion on electron transfer are not clearly defined. Here, a series of β-strand and 310-helical peptides, capable of binding Zn2+via suitably positioned His residues, was synthesized and their ability to undergo electron transfer in the presence and absence of Zn2+ studied by electrochemical and computational means. The β-strand peptide was shown to be conformationally pre-organized, with this geometry maintained on complexation with zinc. Electrochemical studies show a significant increase in charge transport, following binding of the zinc ion to the β-strand peptide. In contrast, complexation of zinc to the helical peptide disrupts the intramolecular hydrogen bonding network known to facilitate electron transfer and leads to a loss of secondary structure, resulting in a decrease in charge transfer. These experimental and computational studies reveal an interplay, which demonstrates that bound zinc enhances charge transfer by changing the electronic properties of the peptide, and not simply by influencing secondary structure.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp00635aDOI Listing

Publication Analysis

Top Keywords

electron transfer
16
electronic properties
8
bound zinc
8
zinc ion
8
β-strand peptide
8
complexation zinc
8
secondary structure
8
charge transfer
8
transfer
6
zinc
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!