Calcium channel blocker lercanidipine electrochemistry using a carbon black-modified glassy carbon electrode.

Anal Bioanal Chem

Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535, Coimbra, Portugal.

Published: September 2020

AI Article Synopsis

  • Lercanidipine, a calcium channel blocker, was analyzed using various carbon electrode materials and voltammetry techniques across a broad pH range.
  • The study compared unmodified electrodes to those with carbon black nanoparticles in a dihexadecylphosphate film, revealing that lercanidipine oxidation is pH-dependent for pH values between 3.4 and 9.5, occurring in two steps at specific positions on the compound.
  • The research achieved effective electroanalytical determination of lercanidipine with a highly sensitive detection limit of 0.058 μM on a nanostructured GCE modified with the carbon black film, eliminating the need for nitrogen purging.

Article Abstract

Lercanidipine, a third-generation dihydropyridine calcium L-type channel blocker, redox behavior at different carbon electrode materials, in a wide pH range, using cyclic, square-wave, and differential pulse voltammetry, was studied. A comparison was made between unmodified glassy carbon electrode (GCE) and boron-doped diamond electrode (BDDE), and GCE and BDDE modified with a carbon black (CB) nanoparticle embedded within a dihexadecylphosphate (DHP) nanostructured film (CB-DHP/GCE and CB-DHP/BDDE). Lercanidipine oxidation, for 3.4 < pH < 9.5, is an irreversible, diffusion-controlled, pH-dependent process that occurs in two consecutive steps, with the transfer of one electron and one proton, at the N1 and C4 positions in the 1,4-dihydropyridine ring. For pH > 9.5, both oxidation processes are pH-independent and a pKa = 9.40 was determined. Lercanidipine reduction at pH = 7.0 is an irreversible process, and the lercanidipine reduction products are electroactive and follow a reversible electron transfer reaction. Lercanidipine electroanalytical determination, at a nanostructured GCE modified with a CB-DHP film (CB-DHP/GCE), with no need for N2 purging, with a detection limit of 0.058 μM (3.58 × 10 g L) and a quantification limit of 0.176 μM (1.08 × 10 g L), was achieved. Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-020-02591-yDOI Listing

Publication Analysis

Top Keywords

carbon electrode
12
channel blocker
8
glassy carbon
8
carbon
5
calcium channel
4
blocker lercanidipine
4
lercanidipine electrochemistry
4
electrochemistry carbon
4
carbon black-modified
4
black-modified glassy
4

Similar Publications

Solar-Driven Thermally Regenerative Electrochemical Cells for Continuous Power Generation with Coupled Optical and Thermal Integration.

ACS Appl Mater Interfaces

January 2025

Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

This study presents the development of a solar-driven thermally regenerative electrochemical cell (STREC) for continuous power generation. Key innovations include dual-function carbon-based electrodes for efficient solar absorption and electrochemical reactions, a transparent and ultrainsulating silica aerogel to maximize solar spectrum transmission while minimizing heat loss, and a compact heat exchanger to recover heat from hot cell streams. Under 1 sun conditions, the STREC achieves a power density of 912.

View Article and Find Full Text PDF

High Selectivity Fluorescence and Electrochemical Dual-Mode Detection of Glutathione in the Serum of Parkinson's Disease Model Mice and Humans.

Anal Chem

January 2025

Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons and the accumulation of alpha-synuclein. Glutathione (GSH), a key antioxidant, is significantly depleted in PD patients. This study presents a dual-mode detection strategy for selectively determining GSH using a single probe.

View Article and Find Full Text PDF

Despite the various benefits of chlorpromazine, its misuse and overdose may lead to severe side effects, therefore, creating a user-friendly point-of-care device for monitoring the levels of chlorpromazine drug to manage the potential side effects and ensure the effective and safe use of the medication is highly desired. In this report, we have demonstrated a simple and scalable manufacturing process for the development of a 3D-printed conducting microneedle array-based electrochemical point-of-care device for the minimally invasive sensing of chlorpromazine. We used an inkjet printer to print the carbon and silver ink onto a customized 3D-printed ultrasharp microneedle array for the preparation of counter, working, and reference electrodes.

View Article and Find Full Text PDF

Skin-Inspired and Self-Powered Piezoionic Sensors for Smart Wearable Applications.

Small

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China.

Bio-inspired by tactile function of human skin, piezoionic skin sensors recognize strain and stress through converting mechanical stimulus into electrical signals based on ion transfer. However, ion transfer inside sensors is significantly restricted by the lack of hierarchical structure of electrode materials, and then impedes practical application. Here, a durable nanocomposite electrode is developed based on carbon nanotubes and graphene, and integrated into piezoionic sensors for smart wearable applications, such as facial expression and exercise posture recognitions.

View Article and Find Full Text PDF

Role of Mesoporosity in Hard Carbon Anodes for High-Energy and Stable Potassium-Ion Storage.

Small

January 2025

Department of Material Science Engineering, Gachon University, Seongnamdaero 1342, Seongnam, 13120, Republic of Korea.

Herein, NaCl-templated mesoporous hard carbons (NMCs) have been designed and engineered with tunable surface properties as anode materials for potassium-ion batteries (KIBs) and hybrid capacitors (KICs). By utilizing "water-in-oil" emulsions, the size of NaCl templates is precisely modified, leading to smaller particles that enable the formation of primary carbon structures with reduced particle size and secondary structures with 3D interconnected mesoporosity. These features significantly enhance electrode density, reduce particle-to-particle resistance, and improve electrolyte wettability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!