A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optical coherence tomography characterizes the roughness and thickness of the heterogeneous layer on cortical bone surface induced by Er:YAG laser ablation at different moisture contents. | LitMetric

Background: As an innovative bone ablation tool, pulsed erbium: yttrium-aluminum-garnet (Er:YAG) laser is being used in clinical practice. It faces the same problems as traditional tools: the water content of bone usually changes with the position, while the amount of water spray in the process of laser irradiation is also uncertain. Real-time monitoring of the effects of laser bone ablation is necessary, but effective tools are still lacking. In this study, we examined the feasibility of rapidly and non-destructively evaluating the surface properties of bone after Er:YAG laser irradiation at different moisture contents by optical coherence tomography (OCT).

Methods: Bone specimens (n=90) collected from pig cortical bone were used in this study. All bone specimens had similar volume and surface characteristics after machining. To display the baseline level before Er:YAG laser ablation, a control group (n=10) without dehydration or Er:YAG laser ablation was examined with OCT, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectroscopy. The remaining specimens were randomly divided into four groups (n=20/group) with different moisture content: dried (Group 2 and Group 4) or not dried (Group 1 and Group 3). Pulsed Er:YAG laser (120 mJ/pulse, 20 Hz, 100 µs) was used for perpendicular irradiation with (Group 1 and Group 2) or without (Group 3 and Group 4) water spray. The treated specimens were subjected to SEM, EDX spectroscopy, OCT, and then processed for histological evaluation.

Results: After Er:YAG laser ablation, the melting effect was obvious in the SEM results of the dry groups and non-sprayed groups (Groups 2-4). EDX spectroscopy showed that the content of calcium and phosphorus and their ratios remained unchanged in the undried and with water spray group (Group 1) were the closest to the control group. Three-dimensional (3D) OCT could evaluate the depth and shape of ablation grooves. The roughness of the laser-ablated surface could be visualized by extracting the surface lines from cross-sectional OCT images. The results illustrated that the laser ablation with water spray could achieve a smoother surface. Furthermore, OCT results demonstrated that a layer with high image intensity was generated on the bone surface after laser irradiation. The thickness of these layers showed a correlation with whether or not the laser irradiation was sprayed with water. Histology showed that thin eosin-stained layers were created in all experimental groups, which matched well with OCT results of the layers with high image intensity. No denatured layer was observed in the non-irradiated areas of bone tissues.

Conclusions: OCT could rapidly and non-destructively visualize the bone surface before and after Er:YAG laser ablation at four different moisture contents. The morphology of ablation grooves, as well as the roughness and thickness of the heterogeneous layer on the bone surface, could be characterized quantitatively with good correlation with SEM and histology. This study will promote the development of OCT as an efficient and accurate tool for evaluating laser ablation of bone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136740PMC
http://dx.doi.org/10.21037/qims.2020.02.15DOI Listing

Publication Analysis

Top Keywords

eryag laser
32
laser ablation
28
group group
24
bone surface
16
water spray
16
laser irradiation
16
laser
14
bone
13
moisture contents
12
group
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!