Salmon behavioural response to robots in an aquaculture sea cage.

R Soc Open Sci

Centre for Autonomous Marine Operations and Systems, Norwegian University of Science and Technology, Otto Nielsens Veg 10, Trondheim NO-7491, Norway.

Published: March 2020

Animal-robot studies can inform us about animal behaviour and inspire advances in agriculture, environmental monitoring and animal health and welfare. Currently, experimental results on how fish are affected by the presence of underwater robots are largely limited to laboratory environments with few individuals and a focus on model species. Laboratory studies provide valuable insight, but their results are not necessarily generalizable to larger scales such as marine aquaculture. This paper examines the effects of underwater robots and a human diver in a large fish aggregation within a Norwegian aquaculture facility, with the explicit purpose to improve the use of underwater robots for fish observations. We observed aquaculture salmon's reaction to the flipper-propelled robot U-CAT in a sea cage with 188 000 individuals. A significant difference in fish behaviour was found using U-CAT when compared to a thruster-driven underwater robot, Argus Mini and a human diver. Specifically, salmon were more likely to swim closer to U-CAT at a lower tailbeat frequency. Fish reactions were not significantly different when considering motor noise or when U-CAT's colour was changed from yellow to silver. No difference was observed in the distance or tailbeat frequency as a response to thruster or flipper motion, when actuated and passively floating robots were compared. These results offer insight into how large aggregations of aquaculture salmon respond to underwater robots. Furthermore, the proposed underwater video processing workflow to assess fish's response to underwater robots is simple and reproducible. This work provides a practical method to study fish-robot interactions, which can lead to improved underwater robot designs to provide more affordable, scalable and effective solutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7137936PMC
http://dx.doi.org/10.1098/rsos.191220DOI Listing

Publication Analysis

Top Keywords

underwater robots
20
sea cage
8
underwater
8
human diver
8
underwater robot
8
tailbeat frequency
8
robots
7
aquaculture
5
fish
5
salmon behavioural
4

Similar Publications

Wake Detection and Positioning for Autonomous Underwater Vehicles Based on Cilium-Inspired Wake Sensor.

Sensors (Basel)

December 2024

State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.

This paper proposes a method for passive detection of autonomous underwater vehicle (AUV) wakes using a cilium-inspired wake sensor (CIWS), which can be used for the detection and tracking of AUVs. First, the characteristics of the CIWS and its working principle for detecting underwater flow fields are introduced. Then, a flow velocity sensor is used to measure the flow velocities of the "TS MINI" AUV's wake at different positions, and a velocity field model of the "TS MINI" AUV's wake is established.

View Article and Find Full Text PDF

The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing.

View Article and Find Full Text PDF

Magneto-Photochemically Responsive Liquid Crystal Elastomer for Underwater Actuation.

ACS Appl Mater Interfaces

January 2025

Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101 Tampere, Finland.

The quest for small-scale, remotely controlled soft robots has led to the exploration of magnetic and optical fields for inducing shape morphing in soft materials. Magnetic stimulus excels when navigation in confined or optically opaque environments is required. Optical stimulus, in turn, boasts superior spatial precision and individual control over multiple objects.

View Article and Find Full Text PDF

Although the Doppler velocity log is widely applied to measure underwater fluid flow, it requires high power and is inappropriate for measuring low flow velocity. This study proposes a fluid flow sensor that utilizes optical flow sensing. The proposed sensor mimics the neuromast of a fish by attaching a phosphor to two pillar structures (A and B) produced using ethylene propylene diene monomer rubber.

View Article and Find Full Text PDF

The propulsive fins of ray-finned fish are used for large scale locomotion and fine maneuvering, yet also provide sensory feedback regarding hydrodynamic loading and the surrounding environment. This information is gathered via nerve cells in the webbing between their fin rays. A similar bioinspired system that can gather force feedback from fin motion could enable valuable insight into robotic underwater locomotion improving swimming efficiency and orientation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!