Oxidative stress can trigger DNA damage response and activation of cellular senescence. Accumulating studies have demonstrated that senescent cells can produce senescence-associated secretory phenotype that leads to increased bone resorption and decreased bone formation. And elimination of senescent cells or inhibition of SASP secretion has been shown to prevent bone loss in mice. N-acetylcysteine (NAC) is a strong antioxidant. However, it is unclear whether reversed estrogen deficiency-induced bone loss by antioxidant NAC was associated with the inhibition of oxidative stress, DNA damage, osteocyte senescence and SASP. In this study, OVX mice were supplemented with/without E2 or NAC, and were compared with each other. Our results showed that oxidative stress, DNA damage, osteocyte senescence and the secretion of senescence-associated inflammatory cytokines were increased in OVX mice compared with sham-operated mice. However, these parameters were obviously rescued in OVX mice supplemented with E2 or NAC. Data from this study suggest that NAC can prevent OVX-induced bone loss by inhibiting oxidative stress, DNA damage, cell senescence and the secretion of the senescence-associated secretory phenotype.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7137068 | PMC |
Sci Rep
December 2024
Hebei Provincial Key Laboratory of Orthopaedic Biomechanics, Hebei Orthopaedic Research Institute, No. 139 Ziqiang Road, Shijiazhuang, 050051, China.
To investigate the population distribution characteristics of elderly osteoporosis fracture patients in Hebei Province and analyze the effects of air pollutants on elderly osteoporosis fractures, We retrospectively collected 18,933 cases of elderly osteoporosis fractures from January 1, 2019, to December 31, 2022, from four hospitals in Hebei Province. The average age was 76.44 ± 7.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.
The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
Objectives: Bone remodeling imbalance contributes to osteoporosis. Though current medications enhance osteoblast involvement in bone formation, the underlying pathways remain unclear. This study was aimed to explore the pathways involved in bone formation by osteoblasts, we investigate the protective role of glycolysis and N6-methyladenosine methylation (m6A) against oxidative stress-induced impairment of osteogenesis in MC3T3-E1 cells.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, China.
Background: Emerging research indicates that gut microbiota (GM) are pivotal in the regulation of immune-mediated bone diseases. Nonunion, a bone metabolic disorder, has an unclear causal relationship with GM and immune cells. This study aims to elucidate the causal relationship between GM and nonunion using Mendelian Randomization (MR) and to explore the mediating role of immune cells.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain.
Objective: To identify the genetic cause underlying the methylation defect in a patient with clinical suspicion of PHP1B/iPPSD3.
Design: Imprinting is an epigenetic mechanism that allows the regulation of gene expression. The locus is one of the loci within the genome that is imprinted.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!