Changes in landscape structure can affect essential population ecological features, such as dispersal and recruitment, and thus genetic processes. Here, we analyze the effects of landscape metrics on adaptive quantitative traits variation, evolutionary potential, and on neutral genetic diversity in populations of the Neotropical savanna tree . Using a multi-scale approach, we sampled five landscapes with two sites of savanna in each. To obtain neutral genetic variation, we genotyped 60 adult individuals from each site using 10 microsatellite loci. We measured seed size and mass. Seeds were grown in nursery in completely randomized experimental design and 17 traits were measured in seedlings to obtain the average, additive genetic variance ( ) and coefficient of variation ( %), which measures evolvability, for each trait. We found that habitat loss increased genetic diversity () and allelic richness (), and decreased genetic differentiation among populations ( ), most likely due to longer dispersal distance of pollen in landscapes with lower density of flowering individuals. Habitat amount positively influenced seed size. Seeds of are wind-dispersed and larger seeds may be dispersed to short distance, increasing genetic differentiation and decreasing genetic diversity and allelic richness. Evolvability ( %) in root length decreased with habitat amount. Savanna trees have higher root than shoot growth rate in the initial stages, allowing seedlings to obtain water from water tables. Landscapes with lower habitat amount may be more stressful for plant species, due to the lower plant density, edge effects and the negative impacts of agroecosystems. In these landscapes, larger roots may provide higher ability to obtain water, increasing survival and avoiding dying back because of fire. Despite the very recent agriculture expansion in Central Brazil, landscape changes are affecting neutral and adaptive variation in . Several populations have low additive genetic variation for some traits and thus, may have limited evolvability, which may jeopardize species long-term persistence. The effect of habitat loss on highly variable neutral loci may only be detected after a certain threshold of population size is attained, that could become dangerously small masking important losses of heterozygosity endangering species conservation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7109282 | PMC |
http://dx.doi.org/10.3389/fgene.2020.00259 | DOI Listing |
Sci Rep
December 2024
Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar-Fann, Dakar, 10700, Senegal.
Cowpea is a seed legume, important for food and nutritional security in Africa's arid and semi-arid zones. Despite its importance, cowpea is experiencing a loss of genetic diversity due to climate change. Therefore, this study aimed to evaluate the genetic variability of 33 cowpea mutant collections using 20 SSR and 13 ISSR markers.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
Warfarin is the most widely used oral anticoagulant in clinical practice. The cytochrome P450 2C9 (CYP2C9), vitamin K epoxide reductase complex 1 (VKORC1), and cytochrome P450 4F2 (CYP4F2) genotypes are associated with warfarin dose requirements in China. Accurate genotyping is vital for obtaining reliable genotype-guided warfarin dosing information.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
Astrocyte to neuron reprogramming has been performed using viral delivery of neurogenic transcription factors in GFAP expressing cells. Recent reports of off-target expression in cortical neurons following adeno-associated virus (AAV) transduction to deliver the neurogenic factors have confounded our understanding of the efficacy of direct cellular reprogramming. To shed light on potential mechanisms that may underlie the neuronal off-target expression of GFAP promoter driven expression of neurogenic factors in neurons, two regionally distinct cortices were compared-the motor cortex (MC) and medial prefrontal cortex (mPFC)-and investigated: (1) the regional tropism and astrocyte transduction with an AAV5-GFAP vector, (2) the expression of Gfap in MC and mPFC neurons; and (3) material transfer between astrocytes and neurons.
View Article and Find Full Text PDFSci Rep
December 2024
Molecular Biology and Genetics Laboratory (LGBM), UFMS - Federal University of Mato Grosso do Sul, Três Lagoas, Brazil.
Sickle cell anemia (SCA) is a monogenic blood disease with complex and multifactorial pathophysiology. The endocannabinoid system (ECS) could be a candidate for modulating SCA complications, such as priapism, as it has demonstrated an essential role in hematopoiesis, platelet aggregation, and immune responses. We evaluated the association of ECS-related single nucleotide polymorphisms (SNP) (FAAH rs324420, MAGL rs604300, CNR1 rs7766029, and CNR2 rs35761398) with priapism in a Brazilian SCA cohort.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biology, Queen's University, Kingston, ON, Canada.
Genetic diversity can influence fitness components such as survival and reproductive success. Yet the association between genetic diversity and fitness based on neutral loci is sometime very weak and inconsistent, with relationships varying among taxa due to confounding effects of population demography and life history. Fitness-diversity relationships are likely to be stronger and more consistent for genes known to influence phenotypic traits, such as immunity-related genes, and may also depend on the genetic differences between breeding partners.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!