Porcine reproductive and respiratory syndrome virus (PRRSV) has been recognized to induce proinflammatory cytokine production and modulate the host interferon (IFN) system. Proinflammatory cytokines and type I IFNs contribute to the prevention of viral infection. Lipopolysaccharide (LPS), a specific agonist to Toll-like receptor 4 (TLR4), provokes signal transduction and activates immune response and . Here we identified LPS inhibited PRRSV infection in porcine alveolar macrophages (PAMs) and in Marc-145 cells. To investigate the possible mechanism, we found TLR4-NF-κB pathway was obviously activated in LPS-treated PAMs at the early stage of PRRSV infection. As a result, the expression of proinflammatory cytokines was strongly induced following LPS and PRRSV co-treatment. Due to the enhanced proinflammatory response, CD163 expression was significantly reduced and a disintegrin and metalloproteinase 17 was activated, which promotes the cleavage of membrane CD163. Ultimately, CD163 down-regulation led to the suppression of PRRSV replication. Our data demonstrate that LPS has an impact on PRRSV infection via inflammation response, which provides a new insight of inflammation-mediated antiviral immunity and a new strategy to control PRRSV infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7109323 | PMC |
http://dx.doi.org/10.3389/fmicb.2020.00501 | DOI Listing |
Vet Microbiol
January 2025
Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China. Electronic address:
Porcine reproductive and respiratory syndrome virus (PRRSV) has become one of the most economically important diseases to the global pig industry. RNase L is a ubiquitous cellular endoribonuclease that is activated upon the binding of a specific ligand, 2',5'-linked oligoadenylates (2-5 A), which is synthesized by oligoadenylate synthetases (OASs). However, whether Sus scrofa RNase L (sRNase L) could inhibit PRRSV replication and its mechanism have not been fully elucidated.
View Article and Find Full Text PDFAnim Microbiome
January 2025
Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193, Cerdanyola del Vallès, Spain.
Background: Porcine reproductive and respiratory syndrome virus (PRRSV) is a major threat to swine industry worldwide, especially virulent variants arising during the last years, such as Spanish PRRSV-1 Rosalia strain. The role of the nasal microbiota in respiratory viral infections is still to be unveiled but may be promisingly related with the health status of the animals and thus, their susceptibility. The goal of this project was to study the nasal microbiota composition of piglets during a highly virulent PRRSV-1 outbreak comparing animals that died due to the infection with animals that survived it.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
Mitochondria, recognized as the "powerhouse" of cells, play a vital role in generating cellular energy through dynamic processes such as fission and fusion. Viruses have evolved mechanisms to hijack mitochondrial function for their survival and proliferation. Here, we report that infection with the swine arterivirus porcine reproductive and respiratory syndrome virus (PRRSV), manipulates mitochondria calcium ions (Ca2+) to induce mitochondrial fission and mitophagy, thereby reprogramming cellular energy metabolism to facilitate its own replication.
View Article and Find Full Text PDFVirulence
December 2025
State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
Multiple porcine reproductive and respiratory syndrome virus (PRRSV) subtypes coinfect numerous pig farms in China, and commercial PRRSV vaccines offer limited cross-protection against heterologous strains. Our previous research confirmed that a PRRSV lineage 1 branch attenuated live vaccine (SD-R) provides cross-protection against HP-PRRSV, NADC30-like PRRSV and NADC34-like PRRSV. HP-PRRSV has undergone significant genetic variation following nearly two decades of evolution and has transformed into a subtype referred to as HP-like PRRSV, which also exhibits high pathogenicity.
View Article and Find Full Text PDFVirology
January 2025
College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China. Electronic address:
Porcine reproductive and respiratory syndrome virus (PRRSV) is a viral infectious disease that can cause infection in pigs of different ages. The condition known as porcine reproductive and respiratory syndrome poses a serious risk to the world's pig business and results in significant financial losses. Fuzhengjiedu San (FZJDS) is a traditional Chinese medicine compound, the main components include:Radix Isatidis, Radix Astragali and Herba Epimedii.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!