The cerebellum is widely implicated in having an important role in adaptive motor control. Many of the computational studies on cerebellar motor control to date have focused on the associated architecture and learning algorithms in an effort to further understand cerebellar function. In this paper we switch focus to the signals driving cerebellar adaptation that arise through different motor behavior. To do this, we investigate computationally the contribution of the cerebellum to the optokinetic reflex (OKR), a visual feedback control scheme for image stabilization. We develop a computational model of the adaptation of the cerebellar response to the world velocity signals that excite the OKR (where world velocity signals are used to emulate head velocity signals when studying the OKR in head-fixed experimental laboratory conditions). The results show that the filter learnt by the cerebellar model is highly dependent on the power spectrum of the colored noise world velocity excitation signal. Thus, the key finding here is that the cerebellar filter is determined by the statistics of the OKR excitation signal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7111124 | PMC |
http://dx.doi.org/10.3389/fnsys.2020.00011 | DOI Listing |
Otolaryngol Head Neck Surg
January 2025
Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA.
Objective: To develop a proof-of-concept smart-phone-based eye-tracking algorithm to assess non-pathologic optokinetic (OKN) nystagmus in healthy participants. Current videonystagmography (VNG) is typically restricted to in-office use, and advances in portable vestibular diagnostics would yield immense public health benefits.
Study Design: Prospective cohort study.
Anal Chem
January 2025
Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.
Ion optics are crucial for spectrometric methods such as mass spectrometry (MS) and ion mobility spectrometry (IMS). Among the wide selection of ion optics, temporal ion gates are of particular importance for time-of-flight MS (TOF-MS) and drift-tube IMS. Commonly implemented as electrostatic ion gates, these optics offer a rapid, efficient means to block ion beams and form discrete ion packets for subsequent analysis.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2024
In this paper, we explore the impact of exposure time on optical-phase measurements collected on light that has propagated through atmospheric-optical turbulence. We model the exposure time by phase averaging over a convective distance, and we quantify the associated impact of imposing an exposure time using the piston- and tilt-removed phase variance. We accomplish this analysis through the development of an analytic solution and wave-optics simulations.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316, Oslo, Norway.
In the subauroral zone at the boundary of the auroral oval in the evening and night hours during geomagnetic disturbances, a narrow (about 1°-2°) and extended structure (several hours in longitude) is formed. It is known as a polarization jet (PJ) or the subauroral ion drift (SAID). The PJ/SAID is a fast westward ion drift and is one of the main signatures of a geomagnetic disturbance in the subauroral ionosphere at the altitudes of the F-layer, when the geomagnetic AE index reaches more than 500 nT.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Institute of Bioproducts and Paper Technology, Graz University of Technologyy, Inffeldgasse 23, 8010 Graz, Austria.
The mechanical properties of metal-organic frameworks (MOFs) are of high fundamental and practical relevance. A particularly intriguing technique for determining anisotropic elastic tensors is Brillouin scattering, which so far has rarely been used for highly complex materials like MOFs. In the present contribution, we apply this technique to study a newly synthesized MOF-type material, referred to as GUT2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!