Sea level rise is generally attributed to increased ocean heat content and increased rates glacier and ice melt. However, human transformations of Earth's surface have impacted water exchange between land, atmosphere, and ocean, ultimately affecting global sea level variations. Impoundment of water in reservoirs and artificial lakes has reduced the outflow of water to the sea, while river runoff has increased due to groundwater mining, wetland and endorheic lake storage losses, and deforestation. In addition, climate-driven changes in land water stores can have a large impact on global sea level variations over decadal timescales. Here, we review each component of negative and positive land water contribution separately in order to highlight and understand recent changes in land water contribution to sea level variations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115037 | PMC |
http://dx.doi.org/10.1007/s10712-016-9399-6 | DOI Listing |
Mar Biotechnol (NY)
January 2025
Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real (Cádiz), Spain.
The use of cell lines as alternative models for environmental physiology studies opens a new window of possibilities and is becoming an increasingly used tool in marine research to fulfil the 3R's rule. In this study, an embryonic monoclonal stem cell line obtained from a marine teleost (gilthead seabream, Sparus aurata) was employed to assess the effects of photoperiod (light/dark cycles vs constant dark) and light spectrum (white, blue, green, blue/green and red lights) on gene expression and rhythms of cellular markers of proliferation, DNA repair, apoptosis and cellular/oxidative stress by RT-qPCR and cosinor analyses. The results obtained revealed the optimal performance of cells under blue light (LDB), with all the genes analysed showing their highest RNA expression levels and most robust daily variations/rhythms in this condition.
View Article and Find Full Text PDFPeerJ
January 2025
School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States.
Background: Four species support recreational and commercial fisheries along the U.S. Atlantic Ocean and the Gulf of Mexico, with the Gulf of Mexico stock being overfished for over three decades.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
January 2025
Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
Patinopecten yessoensis (Yesso scallop), one of the most important aquaculture molluscs in China, has recently suffered severe Polydora disease, causing economic losses. Cathepsin L (CatL), a cysteine protease, has important functions in immune responses in vertebrates and invertebrates. However, little is known regarding the structure and function of CatL in scallops.
View Article and Find Full Text PDFSci Total Environ
January 2025
Center for Geospatial Research, Department of Geography, University of Georgia, 210 Field St. Room 204, Athens, GA 30602, United States of America.
Tidal flooding can significantly impact vegetation pixel reflectance of coastal salt marshes, presenting a problem for remote sensing studies of these highly productive ecosystems. The current study aimed to spatially and temporally expand our previously developed Flooding in Landsat Across Tidal Systems (FLATS) model to detect and analyze the long-term changes in flooded marsh pixels in Landsat 5-9 imagery. As the FLATS index is only calibrated for Landsat 8, our goal was to expand the use of FLATS to a greater range of Landsat imagery and facilitate the masking of flooded pixels in long-term time series of vegetation indices.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China. Electronic address:
Microplastic pollution has emerged as a significant environmental concern at the global level, potentially threatening biodiversity conservation and human wellbeing. As an important biological group with a wide global distribution, migratory shorebirds face considerable stress due to plastic and microplastic pollution. However, few studies have explored the ecotoxic impact of microplastic pollution on migratory shorebirds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!