(CGMMV) is an important viral pathogen on cucurbit plants worldwide, which can cause severe fruit decay symptoms on infected watermelon (usually called "watermelon blood flesh"). However, the molecular mechanism of this disease has not been well understood. In this study, we employed the isobaric tags for relative and absolute quantitation (iTRAQ) technique to analyze the proteomic profiles of watermelon fruits in response to CGMMV infection. A total of 595 differentially accumulated proteins (DAPs) were identified, of which 404 were upregulated and 191 were downregulated. Functional annotation analysis showed that these DAPs were mainly involved in photosynthesis, carbohydrate metabolism, secondary metabolite biosynthesis, plant-pathogen interaction, and protein synthesis and turnover. The accumulation levels of several proteins related to chlorophyll metabolism, pyruvate metabolism, TCA cycle, heat shock proteins, thioredoxins, ribosomal proteins, translation initiation factors, and elongation factors were strongly affected by CGMMV infection. Furthermore, a correlation analysis was performed between CGMMV-responsive proteome and transcriptome data of watermelon fruits obtained in our previous study, which could contribute to comprehensively elucidating the molecular mechanism of "watermelon blood flesh". To confirm the iTRAQ-based proteome data, the corresponding transcripts of ten DAPs were validated by determining their abundance via quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). These results could provide a scientific basis for in-depth understanding of the pathogenic mechanisms underlying CGMMV-induced "watermelon blood flesh", and lay the foundation for further functional exploration and verification of related genes and proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178218 | PMC |
http://dx.doi.org/10.3390/ijms21072541 | DOI Listing |
GM Crops Food
December 2025
School of Life Science, Henan University, Kaifeng, Henan, People's Republic of China.
Malic acid markedly affects watermelon flavor. Reducing the malic acid content can significantly increase the sweetness of watermelon. An effective solution strategy is to reduce watermelon malic acid content through molecular breeding technology.
View Article and Find Full Text PDFMolecules
January 2025
Department of Food Storage and Technology, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wroclaw, Poland.
The growing interest in a plant-based diet leads to the search for new sources of protein in the human diet as an alternative to animal proteins. Plant materials that can supplement protein as additives in food products are being studied. Watermelon seeds ( L.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China.
Fruit diameter is one of important agronomy traits that has greatly impacts fruit yield and commercial value in cucumber (Cucumis sativus L.). Hence, we preliminary mapping of fruit diameter was conducted to refine its genetic locus.
View Article and Find Full Text PDFPlant Dis
December 2024
Universidade Federal Rural do Semi-Arido, Ciências Agronômicas e Florestais, Mossoro, Rio Grande do Norte, Brazil;
Watermelon (), it's an important fruit in Brazil, producing 1.9 million ton/year, occupies the fifth place in the world, (FAO, 2022), but post-harvest diseases are a major limitation, leading to losses of up to 15% (Balasubramaniam et al. 2023).
View Article and Find Full Text PDFPharm Nanotechnol
December 2024
Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal.
Introduction: Metal nanoparticles have received much attention due to their unique physical dynamics, chemical reactivity, and promising biological applications. Green synthesis using natural compounds is an alternative to traditional chemical methods for the synthesis of nanoparticles.
Materials And Methods: Herein, two secondary metabolites were isolated from different fractions of methanolic extract of Citrullus colocynthis (bitter apple) Schard.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!