Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, we report high-performance Micro-LEDs on sapphire substrates, with pixel size scaling to 20 µm and an ultra-high current density of 9902 A/cm. The forward voltages (V) of the devices ranged from 2.32 V to 2.39 V under an injection current density of 10 A/cm. The size and structure-dependent effects were subsequently investigated to optimize the device design. The reliability of Micro-LED devices was evaluated under long-aging, high-temperature, and high-humidity conditions. It was found that Micro-LED devices can maintain comparable performance with an emission wavelength of about 445 nm and a full width at half maximum (FWHM) of 22 nm under extreme environments. Following this, specific analysis with four detailed factors of forward voltage, forward current, slope, and leakage current was carried out in order to show the influence of the different environments on different aspects of the devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221619 | PMC |
http://dx.doi.org/10.3390/nano10040689 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!