A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deposition of α-pinene oxidation products on plant surfaces affects plant VOC emission and herbivore feeding and oviposition. | LitMetric

White cabbage, Brassica oleracea, plants and artificial leaves covered with B. oleracea epicuticular wax were exposed to α-pinene and α-pinene oxidation products formed through the oxidation of α-pinene by ozone (O) and hydroxyl (OH) radicals. O and OH-induced oxidation of α-pinene led to the formation of oxygenated volatile organic compounds (OVOCs) and secondary organic aerosol particles (SOA), referred to together as oxidation products (OP). Exposure of cabbage plants to O and OH-induced α-pinene OP led to the deposition and re-emission of gas-phase OP by exposed cabbage plants. In a series of 2-choice bioassays, the specialist cruciferous herbivore, Plutella xylostella adults deposited less eggs on artificial leaves exposed to α-pinene OP than on control plants exposed to clean filtered air. P. xylostella larvae did not show a specific feeding preference when offered leaves from different exposure treatments. However, the generalist Indian stick insect, Carausius morosus, fed more on control filtered air-exposed plants than on those exposed to α-pinene OP. Taken together, our results show that exposure to α-pinene oxidation products affects VOC emissions of B. oleracea and alters P. xylostella oviposition and C. morosus feeding responses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.114437DOI Listing

Publication Analysis

Top Keywords

oxidation products
16
α-pinene oxidation
12
exposed α-pinene
12
artificial leaves
8
α-pinene
8
oxidation α-pinene
8
α-pinene led
8
cabbage plants
8
plants exposed
8
oxidation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!