Analyzing the rhythm of animals' acoustic signals is of interest to a growing number of researchers: evolutionary biologists want to disentangle how these structures evolved and what patterns can be found, and ecologists and conservation biologists aim to discriminate cryptic species on the basis of parameters of acoustic signals such as temporal structures. Temporal structures are also relevant for research on vocal production learning, a part of which is for the animal to learn a temporal structure. These structures, in other words, these rhythms, are the topic of this paper. How can they be investigated in a meaningful, comparable and universal way? Several approaches exist. Here we used five methods to compare their suitability and interpretability for different questions and datasets and test how they support the reproducibility of results and bypass biases. Three very different datasets with regards to recording situation, length and context were analyzed: two social vocalizations of Neotropical bats (multisyllabic, medium long isolation calls of Saccopteryx bilineata, and monosyllabic, very short isolation calls of Carollia perspicillata) and click trains of sperm whales, Physeter macrocephalus. Techniques to be compared included Fourier analysis with a newly developed goodness-of-fit value, a generate-and-test approach where data was overlaid with varying artificial beats, and the analysis of inter-onset-intervals and calculations of a normalized Pairwise Variability Index (nPVI). We discuss the advantages and disadvantages of the methods and we also show suggestions on how to best visualize rhythm analysis results. Furthermore, we developed a decision tree that will enable researchers to select a suitable and comparable method on the basis of their data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7141653 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1007755 | DOI Listing |
The plainfin midshipman fish (Porichthys notatus) relies on the production and reception of social acoustic signals for reproductive success. During spawning, male midshipman produce long duration advertisement calls to attract females, which use their auditory sense to locate and access calling males. While seasonal changes based on reproductive state in inner-ear auditory sensitivity and frequency encoding in midshipman is well documented, little is known about reproductive-state dependent changes in central auditory sensitivity and auditory neural responsiveness to conspecific advertisement calls.
View Article and Find Full Text PDFJ Speech Lang Hear Res
January 2025
Division of Phoniatrics and Pediatric Audiology, Department of Otolaryngology, Munich University Hospital and Faculty of Medicine, Munich University (Ludwig-Maximilians-Universität), Germany.
Purpose: This study explores the effects of water intake and a hyaluronic acid (HA)-containing lozenge on acoustic measurements and vocal oscillation patterns investigated after a vocal loading test (VLT).
Method: Ten healthy subjects (five females, five males) read out loud a standardized text for 10 min at a target level of 80 dB(A), measured 30 cm from the mouth, under three conditions but each after fasting for 2 hr: (a) drinking 0.7 l of water, (b) sucking an HA-containing lozenge, and (c) neither of both before the VLT.
Front Psychol
January 2025
Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States.
The process of decision making is a complex procedure influenced by both external and internal conditions. Songbirds provide an excellent model to investigate the neural mechanisms of decision making, because females rely on acoustic signals called songs as important stimuli in directing their mate choice. Previous experiments by our group and others have implicated secondary auditory brain sites in female evaluation of song quality, including the caudal portions of the nidopallium (NC) and mesopallium (CM).
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli, 140306, India.
Fluoropolymer alone, as an alternative to lead-based piezoelectric materials, has shown multiple challenges to develop useful sensors for solving real-world problems such as photoacoustic, ultrasound pulse echo, and other non-destructive testing. This work demonstrates the fabrication of high frequency and wide bandwidth transducers with fluoropolymer and highly polarizing cubic single crystal Barium titanate (BaTiO) ceramic composite for high resolution in-vivo photo-acoustic and ultrasound imaging. For transducer fabrication, a customized bio-compatible nanocomposite sensor film of PVDF-TrFE (Polyvinylidene fluoride trifluoroethylene)/BaTiO (BTO) is synthesized by drop and dry in heating-cum-electro-poling system for advancing polarization, crystallinity, and higher charge generation.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.
Ion optics are crucial for spectrometric methods such as mass spectrometry (MS) and ion mobility spectrometry (IMS). Among the wide selection of ion optics, temporal ion gates are of particular importance for time-of-flight MS (TOF-MS) and drift-tube IMS. Commonly implemented as electrostatic ion gates, these optics offer a rapid, efficient means to block ion beams and form discrete ion packets for subsequent analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!